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Abstract

The parasitic array is a promising method of building an adaptive

array in a tiny aperture. This is particularly attractive for HF. Both

theory and experimental results are presented. The theory is established

with respect to two models of a compact array, an impedance model and a
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The models are then used to explore the issues of null forming and adaptive
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electronically variable active termination. Experimental results were ob-

tained from an array both with passive and active terminations. Empirical

results with active complex-valued terminations demonstrated the feasibility
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compact array having parasitic auxilliary elements and an unweighted main
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1.0 INTRODUCTION AND BACKGROUND

1.1 Introduction

A parasitic array consists of a main element directly connected

to a receiver plus additional parasitic elements coupled to the receiving

element by the mutual impedance between the antennas. The array antenna

pattern is controlled by adjusting the values of the complex impedances

that terminate the parasitic elements. The value of each terminating im-

pedance determines the phase and amplitude of the signals reflected from

that parasitic element to the receiving element. Thus, the main antenna

element receives the sum of the various reflected signals to form an array

output. The use of such an array for directional beam forming has been

studied by Harrington, [6-101.

A spatial interference canceller (SIC) uses a parasitic array

with complex terminations for directional null forming. In addition, an

adaptive SIC would require an automatic control algorithm for controlling

the complex terminations, such as: least mean square (LMS), gradient con-

trol, univariate search, dither, etc.

Zeger-Abrams Incorporated (ZAI) has performed an analysis of the

use of a parasitic array for adaptive nulling [1,2]. Below, the "trans-

mission-line" model therein presented is refined, and an extended analysis

of the methods of implementation and the performance of using a parasitic

array for adaptive nulling is given.

The goal of the SIC program is to develop a compact adaptive

array (an order of magnitude or more smaller than a conventional array)

using parasitic elements with variable complex terminations. Such an ar-

ray would provide anti-jaming (AJ) capabilities in a very tiny aperture,

using less electronic hardware and fewer RF cables.

1.2 Background

Many present and future receivers (for radio communications,

radar, navigation, IFF, Di, ELINT, etc.) will be required to operate in

a severe electromagnetic interference (EMI) environment that includes

unintentional local and deliberate remote sources of EMI.

A common problem in Navy HF communications is the presence of -

strong intentional and unintentional sources of interference. Usually

these sources have unpredictable azimuthal directions of arrival which

are different than the desired signal azimuths. One technique for reducing

1-1 '>;



the interference is to use an adaptive array (AA) that is capable of placing

nulls in the directions of interferers and a main lobe in the direction of

the required signal.

Adaptive array hardware has been demonstrated at various fre-

quencies from VLF to C-band. Previous AA designs for remotely generated

interferences (e.g., ECM) have employed an array of antennas spaced greater

than a half wavelength in order to minimize inter-element coupling. Inter-

ference cancellation has traditionally taken place in a physical device

(directional coupler, transformer, hybrid summer) functioning as a

phasor subtractar.

Prior AA designs suffer from costly installation of coaxial

cables to elements, poor nulling performance due to inter-element coupling

effects, and great consupption of available space on aircraft surfaces

and ship masts by antennas.

These drawbacks of prior designs can be reduced or eliminated

by using the linear superposition property of free space (for electro-

magnetic fields)-to accomplish spatial interference cancellation (SIC).

An antenna array and a conventional beamformer are illustrated

in Figure Ia. The complex signal envelope yn incident upon the nth antenna

is weighted (complex multiplication) by the complex weight w . With an

unweighted main antenna, the array output equals y0 + EWnynp which is the

input to the receiver. Antenna element spacing is typically X/2, and inter-

element coupling is small and is usually neglected.

In a spacial beamformer, illustrated in Figure Ib, a main antenna

is connected directly to the receiver, and a compact array of parasitic

elements is terminated in complex impedances. The value of the terminating

impedance zTn of the nth parasitic element is controlled to adjust its
complex reflectivity p . In this way, the signal yn incident upon zn is

weighted before being coupled to the main antenna, where it is spacially

sued with contributions from the other parasitic elements. The input to

the receiver is equal to y0 + EnPnyn, where mon is the dimensionless

complex coupling coefficient between the nth parasitic element and the main

antenna. The similarity of receiver inputs for the conventional and para-

sitic arrays is evident if one substitutes m non for w.

Array pattern control in the conventional array is achieved by

adjusting the wn . In the parasitic array one can adjust the Pn or the ZTn.

If the complex impedance of the transmission line (between the nth antenna

1-2
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By combining Equations (2.6) and (2.7), we obtain YT in terms of v .

-1o

ET - ZT(ZT + ZA)-Ivoc (2.8)

Thus we can completely characterize the array during reception

knowing the open circuit mutual impedance matrices of the antenna and

the load networks and the vector of array open circuit voltages, v,

due to an incident plane wave. Harrington gives computer programs which

Ill calculate ZA and v oc for an array of wire dipole antennas [10,12].

The impedance model has been briefly introduced here to allow

the reader to become aquainted with it. The impedance model is fairly

well defined in the literature. In the next chapter, the transmission

line model that Zeger-Abrams Incorporated has developed shall be related

to the impedance model. This relationship is based on the theory of

scattering parameters, of which a derivation is given in Appendix B.

2.3 Properties of Compact Parasitic Arrays

The compact parasitic array has many differences with the con-

ventional antenna array. These differences will be pointed out and dis-

cussed in this section.

The most important difference is that the compact parasitic

array has strong mutual coupling. In the conventional array, mutual 2

coupling is undesired and efforts are made to keep it minimal. The prin-

cipal manner in which this is done, is to keep the antennas far apart.

In the parasitic arrays, strong mutual coupling is necessary for oper-

ation. A small compact array (dimensions on the order of O.iX or less)

are needed to ensure strong mutual coupling.

Because the array is small, many features of the array will

be broadband and broadbeamed. High directivity will not be possible as

the main lobe will always be somewhat broad. Similarly, when nulls are

formed, the null widths will be slightly wider than those obtained in

conventional arrays. For details, see the experimental results reported

in Chapters 6 and 8.

The frequency characteristics of the array, particularly with

active terminations, are difficult to determine. The reflections off

the parasitic element terminations and the mutual coupling create

very complex feedback that is difficult to analyze. Even more funda-

2-10
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The process of nulling a signal is one of finding the pn's such

that y0  0 in Equation (2.3a). This is done in Section 4.1. The

resulting p n's turn out to be independent of p0. This results from the

fact when there is no incident voltage to reflect at the termination

(receiver) of the main antenna, it doesn't matter to the rest of the sys-

tem what P0 is.

A final comment, for the transmission line model presented here

it has been assumed that there are transmission lines between the antennas

and the terminations. It turns out that this is not necessary (or more

specifically, one can assume transmission lines of zero length). This is

shown in Appendices C.1 and C.2.

2.2 Impedance Model

The impedance model has been used by Harrington in several papers

to describe a parasitic array for various purposes [6-10]. This model of

an array while receiving is illustrated in Figure 5. ZA is the open cir-

cuit mutual impedance matrix of the antenna array looking directly into

the antenna ports. Z is the open circuit mutual impedance matrix looking

at the terminations through the transmission lines. In our array ZT is

diagonal, but the main results are valid for a general terminating network.

The open circuit voltage, v ocn, is the terminal voltage at the nth port due

to a plane wave incident on the array with all antenna ports open circuited.

As with Y+ of the transmission line model, v will depend on the field strength

and wave vector, k, of the incident plane wave. For convenience, the model

used here assumes there are no transmission lines in between the terminations

and the array (or at least the effect of these transmission lines are included

in the impedance parameters).

To compute the vector of voltages across the load terminals, vT ,

we must first find the current vector, i.

v o =-(ZT + ZA)i

therefore

i =-(ZT 
+ ZA) v oc• (2.6)

But we know that i is related to vT by the load matrix ZT.

-T - -ZT1 (2.7)

2-8



If the input impedance of the receiver attached to the main

antenna matches the line impedance - zo, then P0  0. The Equations

(2.3) reduce to

Y0 y Yso + --mT P  (2.4a)

-= s+P (2.4b)

(with p0  0)

Equation (2.4b) can be solved for the incident voltage vector

of the auxiliaries, y.

Thus Equations (2.4) can be rewritten as

T -1
YO= Ys0 + M  PQ Ys (2.5a)

Q- s  (2.5b)

(with P0 = 0 and Q I - HP)

Equations (2.5) could have been obtained directly from Equation

(2.2) using matrix identity (A.9) from Appendix A with the fact P0 = 0.

Q+ (Po 0 ) = ...-._, ...-

From identity A.9 we can compute

T-1

Q+ (po ) ..........

thus

I T-1 .

which is equivalent to Equations (2.5).

2-7
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Let us now examine what happens during reception. The vector
of voltages, y1, incident on the terminations will be the sum of two terms,

Ys+ and M+P+y+, as given in Equation (2.1). (See Figure 4.)

I+ " s+ + +P (2.1)

The term Y+ is due to the incident plane wave. The term M+P+y+ is due

to the incident voltages of y+ being reflected off the terminations as

P~y+ and then coupled via the mutual coupling matrix M+ into downward

traveling voltages of M+P+ +."

Equation (2.1) demonstrates that the system is one of multivar-

iate linear feedback in terms of the incident voltages y+. The input is

The "loop gain" is M+P+. Since active terminations are being allowed,

the reflectivity of the matrix P+ may exhibit gain. Thus it is reasonable

to ask when does the matrix product M+P+ represent positive feedback which

renders the system unstable. This issue of stability is addressed in Sec-

tion 4.2.

Given that the system is stable, one may solve Equation (2.1)
for the voltages incident on the terminals, y+.

=(I - M+P+) -s+

Q+ Xs+ (2.2)

where Q+ - I- +

We can also separate Equation (2.1) into two equations, one

for the main antenna and one for the parasitic auxiliaries.

YO Y + m +Mp (2.3a)

S ys + P oYo + MPz (2.3b)

2-5
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The systematic approach considered the voltages in the array

after all the "ping-ponging" has finished. The equations that described

V- 7 this state were written down and solved for the various traveling voltage

waves. In matrix form, these equations are represented by Equation (2.1)

below. In the initial analysis the systematic approach yielded little

insight as to what values of the reflectivities, pn , and mutual coupling

coefficients, mij , allow stable operation. The only restriction that

came out of the analysis was

det IQ+1 - det Iir - H+P+I 0

This constraint was not restrictive enough. It did not prohibit all sit-

uations that were inoperable. In particular it did not prohibit the equival-

ent of positive feedback.

In the analysis that follows the systematic approach is refined.

With this new model several issues are explored. These issues include

stability, null forming, adaptive control, and the relationship to Harrington's

impedance model.

The refined transmission line model and its parameters are il-

lustrated in Figure 2(a-d). Note it has been assumed M is symmetric, or

in general mj - m. . This is true, given that all the transmission lines
Ij ji

connecting the antennas with the terminations have the same characteristic

impedance. This is shown in Appendix C.2, when mu are calculated

directly from their definition via the antenna mutual impedance matrix, ZA.
Hereafter, it is assumed that all these characteristic impedances are the same.

The parameters of the transmission line model have been defined

in a manner that allows them to be measured relatively easily from a
physical array. Configurations for measuring the entries of M+ ands+

are given in Figures 3a and 3b respectively. Note adjustments in the cal-

culations will have to be made due to the phase and amplitude effects of

the directional couplers and the extra cable lengths.

In Sections 3.3 and 3.4, formulae for the computation of M+ and

Y in terms of the open circuit mutual impedance matrix of the array, ZA,

are derived. However, calculation or measurement of ZA is quite compli-

cated. Indeed, for measuring ZA, it is probably easier to measure M and

then calculate ZA from it.

2-2



2.0 CHARACTERIZATION OF PARASITIC ANTENNA ARRAYS

The two models of a parasitic array are described in this chapter.
Each model will be described in terms of a receiving array. Then in Chapter

3, the relationships between the models will be established using both receiv-

ing and transmitting arrays. The models have about equal complexity when

analyzing a receiving array. The impedance model is easier to analyze for

a transmitting array. The transmission line model is easier to analyze for

control of the terminations (particularly active terminations) as an adaptive

nulling array. The transmission line model assumes transmission lines --

between the array and the terminations, although these lines may be of zero

length. The impedance model may be used with transmission lines between the

germinations and the array, although the calculations are more complex (as

one sees in Chapter 3).

The main difference between a transmitting and a receiving array

is in a transmitting array the termination is the source and the array is the

load, while in a receiving array the array is the source and the termination

is the load.

2.1 Transmission Line Model

The transmission line model of the array analyzes the voltage

traveling-waves within the cables, antennas and terminations, the inter-

coupling of these waves through the antennas, and the reflections of the

waves off the terminations.

The parasitic array with complex terminations has been previ-

ously analyzed by ZAI with transmission line techniques, [1,2]. In this

previous analysis two analytic approaches were used: the infinite series

(ping-pong) approach and the systematic approach. These results are sum-

marized below.

The infinite series approach considered all the possible reflec-

tions off the terminations and antennas and all the mutual cbupling between

antennas. The result was expressed as an infinite geometric series and

summed. However, only the two antenna array could be analyzed. For larger

arraya the mathematics become to unwieldy. In addition, the constraints

on the reflectivities, p., and the mutual coupling factors, mij, necessary

for convergence of the infinite series are too restrictive. They disallow

regions where safe operation is possible. In particular, negative feed-
' . back of greater than unity gain. The general question of stability is

very involved and is taken up later in Section 4.2.

2-1



v W vector of the N + I terminal voltages of the antenna array.

i M vector of the N + I port currents of the antenna array.

S (N + 1) x (N + 1) matrix of scattering parameters of the
N + 1 port antenna network.

1-7
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Ys y due to a plane wave incident on the array with all

terminations = Zo , the characteristic impedance of the

transmission lines. n - 0, 1,..., N. Ysn is dependent
on the wave vector, k, of the incident plane wave.

(s -Y s+=(Y sN ,

mjj - mutual coupling coefficients:

the ratio of the downward (toward the termination) voltage
traveling wave incident on the jth termination to the
upward (toward the antenna) voltage traveling wave trans-
mitted into the cable from the ith termination. All other
upward traveling waves being zero. All terminations - zo .
i, j - 0, 1,..., N. Note, M and M are symmetric matrices.

m+

0- 1  M - mi , i, j = 1,..., N.
-0 i

ON)

( 0 'ri i j o ,1., N.
M+ ....... jI

. I

( -m 0 0

QI - MP, Q+ I- M+P+ ................ .Q

z - characteristic impedance of transmission lines between
0 antennas and terminations

ZTn impedance terminating the cable from the nth antenna,
n 0, 1,..., N.

(ZTo)

z T
TT

Z open circuit mutual impedance matrix of the antenna arrayA.at the antenna ports (zero cable lengths).
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(e.g.)

+ M O0 % i, j 0, 1,.. N

and H [mij] i, j ,..., N

6) The absence of the subscript "+" on the matrices M, P, or Q,
or the vectors y or y. will denote that they are N x N or N x 1
matrices or vectors, respectively. They will be composed of

entries only corresponding to the auxiliary antennas (e.g., M or Y.

7) The impedance model works exclusively with the total array.of
main antenna plus auxiliary. This shall be understood with all
its associated variables (ZT, ZA, v, S, etc.) without the sub-
script '+".

8) Subscripts "R" and "I" will denote, respectively, the real
and imaginary components of the designated value.

9) The superscripts "T" and "*" will denote, respectively, transpose
and complex conjugation.

10) In the derivations that are devoted to the single element cases,
all variables become scalars and will be denoted by the appro-
priate lower case, non-underlined letters. Also, all indices

will be dropped.

21T
k the wave vector of a plane wave - - u, where X is the

wavelength and u is the unit direction vector of the plane

wave.

P reflection coefficient of the nth termination.
n 0 , 1,..., N.

Snthe complex envelope of the voltage traveling wave incident

on the nth termination. n - 0, 1,..., N.
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and its termination zn) has the value Zo, then:
Tn0

P = (z - z )/(Z + zo) (1.1)
n Tn 0 Tn 0

The work described here introduces the following changes to the

previous work of Harrington [6, 7, 8, 9]:

a) Terminating impedances can have complex, not just imaginary

(reactive) values.

b) Terminating impedances can be active (have gain) so that the
restriction 1Pn < I is removed.

c) The impedances are controlled to form nulls toward sources

of interference.

d) A closed loop adaptive algorithm controls the zTn for pattern control
in oraer to avoid requiring a knowledge of the array geometry and to
avoid computing tne mutual impedance matrix for open loop pattern
control.

1.3 Scope

The SIC program has been undertaken jointly by ZAI and Naval

Research Laboratory (NRL). ZAI has completed a theoretical analysis of

an SIC and built four electronically variable, active complex terminations

for experimental use. NRL has built an experimental parasitic array. Tests
have been run with this array using passive reactive terminations and also

using the active complex terminations.

1.4 Glossary of Notation

The following conventions will be observed:

1) Upper case letters will represent matrices (e.g., M or P).

2) Lower case letters with an underline will represent vectors
P(e.g., y or ys).

3) Lower case letters without an underline will represent scalars
(e.g., yO or p

4) "0" as a subscript will reference the main antenna (e.g., y0 or m0).

5) 'Y' as a subscript added to the matrices M, P, or Q, or the

vectors y or Y will denote that they have been augmented to
include the colresponding entries of the ,main antenna in addition
to those of the parasitic auxiliary antennas. Such a matrix
or vector will now be (N + 1) x (N + 1) or (N + 1) x I respectively
(where N is the number of auxiliary antennas). To be consistent
with Convention 4, as well as not to disturb the numbering of the

auxiliary antennas, the main antenna is assigned an index of "0".

1-4

.'. . . . . . . . . .



i. .., , . . . - . ,, .- .- -. - .- .- : . '. -------. -.---- ---- n--. .--.-
°  

,.-. . - --- . . .

mentally, there is little information available on how the array para-

meters, mutual impedances, or mutual coupling factors of compact arrays

vary over frequency. Harrington provides computer programs that can be

used to compute these parameters, [12]. The problem is generally intrac-

table for anything but numerical methods.

An issue that arises when considering a parasitic array for

nulling is whether to use active or passive terminations. It is a ques-

tion of stability versus degrees of freedom in the control space.

If passive terminations are used, then the array will always

be stable. The mutual coupling between the antennas, however, is neces-

sarily lossy. That is, 100% of the power is not coupled to other antennas.

It is this loss of power, through re-radiation, that often prevents can-

cellation of an interference with only one auxiliary antenna or N inter-

ferences with N auxiliaries. It is usually necessary to use two or more

passively terminated auxiliary antennas to cancel a single interference.

Thus for the same amount of nulling capabilities a passively terminated

parasitic array will require more elements than an actively terminated

array.

An actively terminated parasitic array will give equal or

better performance with fewer antennas. If, however, too much gain is

used then the inherent feedback nature of the parasitic array could

cause an unstable oscillation to start. The issue of stability is taken

up in detail in Section 4.2. The stability analysis determines the op-

timal mutual coupling matrix, M+ . In order to increase the usable gain

before instability, one should: 1) minimize the antenna mismatch or

return loss or equivalently the self coupling mnn of each antenna, 2) min-

imize the mutual coupling between auxiliary antennas, and 3) maximize

coupling between the main and the auxiliary antennas. The optimal mutual

coupling matrix, M+, is of the form

!M : Ro/ .+ .. .... .... (2.9)

The construction of such an ideal mutual coupling matrix can be approached

by two methods, antenna element and array design and by connecting various

impedances between the antennas of the array.
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Another aspect of parasitic arrays is the inherent non-linear

nature of any control algorithm of the variable terminations. To better

- -- understand this, consider the conventional beamforming array and the pare-

sitic array illustrated in Figure 1. Both arrays behave linearly in that

for a given set of complex weights or terminating impedances if the inci-

dent plane wave is pcaled by a factor c, then the output of the array will

be scaled by c. The conventional array is also linear in a control sense,

in that if one of the complex weights are changed by an amount Aw, then

the array output will change by an amount proportional to Aw, given all

other weights and the inputs to the array remain constant. It is in this

sense that the parasitic array is nonlinear. If one of the reflectivities,

Pn were to change by an amount Ap, the array output in general will not

change by an amount proportional to Ap. From Equation (2.2), the change

in the output (y of y+) is determined by the matrix inverse (I - H P+)0 + +
Another way of looking at this is by the gradient of the array output with

respect to the control variable, either the weights or the reflectivities;

or equivalently be considering the appropriate individual partial deriv-

atives. In the conventional array, the derivatives of the array output

with respect to the weights, By0/2wn, are constant and depend only on the

incident signals and array geometry. For the parasitic array, the deriva-

tives of the output with respect to the reflectivities are functions of

all the reflectivities themselves as well as the incident signals and array

geometry. The nonlinear control of a parasitic array is discussed in

greater detail in Chapter 5. Note a mutual coupling matrix as in Equation

(2.9) above along with pO 0 would allow linear control of the array.
In this case ( I - M+P+ )-l = I + M+P.

Lastly, in this chapter, some properties of a.transmitting array

are discussed. The array far field pattern and the radiated power will be

calculated. A method of calculating the far field pattern based on the array

impedance parameters is described by Dinger [4], for a parasitic array

with reactive terminations. The results are easily extended for general

terminating impedances. Consider the impedance model of an array illus-

trated in Figure 5. Let the voltage sources, V, and the load matrix,

ZT9 be the N + 1-port Thevenin equivalent of the source network of the

array during transmission. Note that the polarity of the voltage sources

is the opposite of the usual convention. To calculate the far field, one
must first find the port currents, in, of the array.
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i - -(ZT + ZA) V (2.6)

Under the assumption that the current on each antenna is determined only

by its port current, then one can use superposition to add up the con-

tribution of each antenna in the far field.

Let us assume that all the antennas are identical monopoles and

orientated in the z-direction. Then the far field pattern as a function

of the azimuthal angle, *, is given below, [7].

() - - e-ikr N Jk(x cos + y sin 0)

E- e n n (2.10)
n-0

where r is the distance from the array, n is the intrinsic impedance of

free space, and xn and yn are the coordinates of the nth antenna relative

to the array phase center. Note it is assumed IXn, jYn[ << r.
A comment on the assumption necessary for superposition. It is

not being assumed there is no mutual coupling. The calculation of the

port current takes that into account. Superposition holds for the cur-

rents on the antennas. But the calculations of Equation (2.6) give us

only the port currents. Thus to use superposition we must assume that

the currents on an antenna are due to its port current alone and that this

antenna current distribution will be the same as that on an isolated an-

tenna. To illustrate further, consider an array of a particular config-

uration with a set of source voltages. Assume that this establishes,

inclusive of all mutual coupling effects, a current i at the port of then

nth antenna. Now let us move the other antennas around and change the

source voltages but always under the condition that the port current of

the nth antenna is maintained at i . The assumption then asserts
n

that currents on the nth antenna, which give rise to its radiated field,

will not significantly change. This assumption is good for antennas that

are small compared to a wavelength (< X/4) even in a compact array. The

port current alone then will determine all antenna currents. If this

assumption cannot be made then the far field pattern can be calculated

using Harrington's computer programs [12].

If one wishes to use transmission line parameters, Equation

(2.10) above is still used but the antenna port currents are calculated

differently. In Appendix C.2, an expression for the antenna port cur-
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rents in terms of the transmission line parameters is derived. In the

notation of Appendix C.2, i(D) is the vector of the antenna port cur-

rents.

1 -1 -- 1-T
I() - Zo (D- M+) (Q) ( P (C32)

where Z is the diagonal matrix of the transmission line characteristico

impedances, D is the diagonal matrix of delays through these transmission

lines (see Equation 3.17) and v is the vector of voltage sources in the--oc

terminations.

Lastly, we calculate the power radiated by a transmitting array.

With an impedance model the average power is given by Equation (2.11).

P - 1/2 Re [i *T

- 1/2 Re i * T ZA i

= 1/2 i*T Re [ZAI (2.11)

where i = -(Z + Z) v The last step is true because Z is symmetric.
A T --oc A

For the transmission line model the power radiated (assuming loss-

less transmission line) is

] 1/8 Re [V*T (- s TS) voii (2.12)

where ST is given in Equation (3.13) or (3.16).
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3.0 RELATIONSHIPS BETWEEN TRANSMISSION LINE AND IMPEDANCE MODELS OF A
PARASITIC ARRAY

In Chapter 3, we shall examine the relationship between the

transmission line model and the impedance model of a parasitic array. This

relationship will be illustrated by analyzing various aspects of receiving

and transmitting arrays with each model. In particular, it is shown how

to calculate the parameters of the transmission line model from the impedance

parameters. The means of relating the two models will be scattering parameters.

The derivation of the matrix of scattering parameters, S, is given in Appendix

B. The scattering matrix is a generalization of the reflection coefficient,

r, of a single port system. For an N-port network, with no sources, the

i,jth scattering parameter, sij, is defined as the ratio of the voltage

traveling wave coming out, "reflected", from the ith port due to the

wave incident on the jth port with no other incident waves.

The matrix of these parameters, S = [si1, can be calculated

from Z and Z . Here, Z is the open circuit mutual impedance matrix

00of the N-port network, and Zis the diagonal matrix of the characteristic

impedances of the media connected to the network ports. We repeat here

equation (B13).

S = (Z -Zo)(Z + Zo)1 (B13)
0 0

One comment before continuing, in the previous chapter it was

assumed there were no transmission lines present with the impedance model.

Hereafter, transmission line will be present and their affects explicitly

calculated.

We begin with a treatment of the single element case.

3.1 Single Antenna Transmitting

The impedance model of a single antenna transmitting is given

in Figure 6a. The difference between the transmitting and receiving

versions of the impedance model is the placement of the voltage source

(compare to Figure 5).

For a single antenna, the scattering matrix will be a scalar,

s, which is simply the reflection coefficient, r, at the same point.

We shall retain the notation, s, so that the generalization to an N-port

network will be seen more readily.
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v 1Chrcersi VT~.. Impedance VA AZo Antenna
z
A

6 a) Impedance Model (with transmission line)

V9  +T ~ Transmission Line BA

I-

6 b) Voltage Traveling Wave Relationships within the
Transmission Lines

Figure 6 Impedance Model of Single Element Array Transmitting
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In Figure 6b, the important relationships among the various

voltage traveling waves are illustrated. sA - (z - z )/(zA + zo) is

the scattering parameter or reflection coeficient at the antenna port.

p - (zT - z)/(zT + z) is the reflection coefficient of a voltage wave

traveling toward the source, incident on the termination. The trans-

mission coefficient of a voltage wave incident on a junction is the

ratio of the voltage transmitted to the voltage incident. Ignoring any

further reflections, continuity of the total voltage means the trans-

mission coefficient is 1 + r. Thus, for a voltage wave toward the source

and incident on the terminations, the transmission coefficient is I + p.

For a voltage wave from the source and incident on the termination-

transmission line interface, the reflection coefficient is (z° - z T)/(z + z T)- -p,

ignoring subsequent reflections off the antenna. Thus, for a similar voltage

wave the transmission coefficient is I - p. The scattering parameter, ST, for

a voltage wave traveling toward the antenna and incident on the termination-

transmission line interface can be calculated from the results of Appendix C.1.

ST = ( z-z) / ( + Z from Equation (C4)
T A T 'A T)

(1 + SA / (1 - z - ZT

from Rule 2 of (3.1)

(I + s A) / (1 - sA) zo + zT Appendix C.1

where A and A are respectively the open circuit impedance and scattering

parameter (reflection coefficient) looking at the antenna within the

antenna transmission line just before the termination. We can further

manipulate Equation (3.1) to obtain:
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s T  (1 + BA) zo - (1 - SA) zT

(1 + BA) Zo + (1 - zA) zT

~T A o 0 T

(z° 0 ZT)  ^ A 0z + T) '2i.

(z + ZT) + sA (zo - zT)

[(z - z) / (Z + zT)] + A

1 + [(zo ZT) (zo + ZT) ]

A -SAP

1 - SAP (3.2)i..

If we compare the definition of sT to the definition of the

mutual coupling factor, m, and noting that when zT = 0 the termination-

transmission line interface becomes invisible, we see that m = sT (with

zT = Z). Indeed this can serve as an alternate definition of m.

A

- sT, when zT =  or equivalently p - 0. (3.3)

-j2a S d2

SA - I

2z
d - Zo)/(z + zo) (3.4)

A o A o

-j akwhere d e is the propagation velocity of the transmission line,

and L is the length of the line. Note that sA is independent of zT.

Thus, Equations (3.3) and (3.4) allow us to calculate the mutual coupling,

m, from the impedancc parameters zA and z .
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-- We shall now obtain Equation (3.2) via the transmission line

model. Consider a voltage wave traveling toward the antenna and incident

on the termination-transmission line interface. Let us call such a vol-

tage wave v(+) (see Figure 7). The voltage that gets transmitted into the

transmission line, ignoring subsequent reflections, is then (1 - p) v +*

This voltage wave toward the antennas becomes a vol:age wave toward the

source incident on the termination of m (1 - p) v(+), again ignoring

further reflections. The resultant (after all reflections) voltage wave

incident on the termination from the antenna, y, can be computed from

Equation (2.2) with ys = m (1 - p) v

-1
y = (1-mp) y

= (1- mp) m (1 -p) V+ (3.5)

The total downward voltage incident on the termination transmits

a voltage (1 + p)y into the termination, traveling toward the source.

There is another component of this voltage, -Pv(+) due to the initial

reflection of the original incident voltage v(+). Thus, we can write:

st(+) = ( + P)y -PV(+)

= [(1 + p)M mp)(1 - p) - p]v

and

s = (1 + P)M - mp) m(1 - p) -P (3.6)
(3.6

(i-p2)m

= -
1 - mp ii :

m- p
,= - (3.7)

1 - m-
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ZT (l+P) y y =(l-mP) 
1 YS [Sum of all reflections]

-Pv ys m(l-P)v (+) [From initial reflection]

v ) )m0- Impedance z Dt , ZA

v (1P)v
(1-AntennnL

Impedance

Figure 7 Transmission Line Model of Single
Element Array Transmitting
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But we know that m = SA' therefore Equation (3.7) is identical to

Equation (3.2).

In this Section, we have demonstrated that m - sA ST(P)-b O

and have calculated sT through both the impedance and transmission line

models.

3.2 Single Antenna Receiving

The impedance model of a single antenna during reception is

given in Figure 8a. Figure 8b illustrates the accompanying traveling

wave parameters. Let us find the voltage across the termination, v

Let vA be the voltage across the antenna port. Then we can find vA

from the current out of the port, iA*

v = - (3.8)
A TA

But, i is given by
A

i (zT + ZA) -v (3.9)

therefore, by combining Equations (3.8) and (3.9), we obtain

VA = T(T Ao (3.10)

From Rule 2 of Appendix C.1, we know that

z = (T + )(- ) z

where is the reflection coefficient seen looking into the transmission

line at the anter.na. Substituting this into Equation (3.10), we obtain
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ZT~Impedance z )(s ~ ZA

8b) Voltage Traveling Wave Relationships witnin the
Transmission Lines

Figure 8 Impedance Model of Single Element Array Receiving
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. - (1 + Z ]- -vopVA - (1+ )( - ) 0 A oc

S(1+ )z [(l + D)z + (1 - O)ZA ] - vo 0 OC

= (+ )Zo [(z A +z ) -(zA - z )] v

(I + ) zo(zA + z) [ - ( ZA - z0 )(zA + z o  oc

But s A 
= (zA - (ZA + Zo)- and zo(z A + z = 1/2(1 - s A ), therefore,

VA= 1/2(1 + )(I - SA)(1 - SA)-vA A (3.11)

To relate vA to VT9 we must consider the traveling waves within

the transmission line. Let 9 be the voltage traveling toward the term-

ination, measured at the antenna end of the transmission line. Since

there is no source in the termination, the total voltage at the antenna

end of the transmission line is 9 plus the corresponding reflected
voltage ^59. Therefore,

vA = (I +)9 and

9 ( + P) vA

If y is the voltage traveling toward the termination, incident on the

termination, then y = d9, where d = e -  , is the delay associated with

the transmission line of length L. Finally, the total voltage at the

termination, vT, is the sum of incident and reflected voltages at the

termination.
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vT (1+ p)y

(1 + P)d

(1 + )d(1 + vA

-1

1/2(l + P)d(l SA )(l -s SA) Voc

- 1/2(1 + p)(1 - Ap) d(1 - s )V(A A (3.12)
A A oc

where ^ = d2 p and sA = d2sA*

If we compare vT to the definition of ys' we see. that

y - VT with z = z0 or equivalently p = 0. Similarly, as in the case

of m, this could serve as an alternate definition of Ys.

Ys = VT 1

= 1/2d(l - BA) voc (3.13)

Let us examine Equation (3.13). From Equation (C6) of Appendix

C.1 we know that the traveling voltage from the antenna, incident on the

antenna-transmission line interface, is simply (1/2)v oc The reflection

coefficient seen from the antenna is -sA and the transmission coefficient

is then 1 - s. Thus, the traveling voltage wave that gets transmitted

through this interface is (1/2)(1 - s A)voc Ys is simply this voltage

multiplied by d to account for the delay in the length of the transmission

lint.

Equation (3.12) can also be quickly derived through the trans-

mission line model. Let the argument in the preceding paragraph establish

Equation (3.13). Then the total voltage in the transmission line inci-

dent on the termination, y, is given by Equation (2.2) as applied to a

single antenna case.

y 1/2(1 mp) d(1 - SA)v
A oc
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The vector u is physically dimensionless. While its physical meaning is

not obvious, u does contain all the information of the incident signals

necessary to form the nulls. From Equation (4.7) we can write

P(Mu - m ) = u , 14.8

Since P is a diagonal matrix, Equation (4.8) represents N equations of

the form
[u] n

n = [Mu]n - mon (4.9)

where [.] represents the nth entry of the vectorn

argument.

There are possible sets of initial signal vectors, y ' which
sn

will result in a u that causes the denominator of Equation (4.9) to be

zero. This means the array, for that combination of the N incoming

signals, loses a degree of freedom in the control space and will only

be able to null N-1 signals. This, however, is not a particularly

scandalous result. Similar behavior is observed in a conventional adap-

tive array with an unweighted main antenna. Consider the 3 element array

in Figure 13. Since the arrival directions of the signals are symmetric

about an axis through the two auxiliary antennas, the relative phase

between the two signals will be the same at both antennas. If the two

antennas have identical azimuthal gain patterns, then the signal at one

antenna will be linearly dependent on the other, i.e., the signals will

be equal except for a complex scalar. In this case only one of the sig-

nals can be nulled.

The concept of degrees of freedom is a useful concept in

adaptive arrays. In a conventional array with an unweighted main antenna,

the number of degrees of freedom is generally the number of weighted

auxiliaries. Similarly in a parasitic array, with a constant termination

on the main antenna, the number of degrees of freedom is generally equal

to the number of active complex terminations. The number of signals that

can be canceled is equal to the number of degrees of freedom.

A degree of freedom can be lost in several ways. In the

example above in Figure 13, a degree of freedom was lost because the sig-

nals were linearly dependent at the weighted antennas but the signal at

the main antenna was independent of the weighted antenna signal. Also

4-3
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Now the equations of (4.1) can be rewritten as

T T T T
0 =s0 + m0 0P 0y + m Py

~ + TY Y +m POy + MPY - (4.2)

If the reflectivities needed for a null are used then y= 0, and

Equations (4.2) become

T T
0 = Ys 0 + m-- Py  (.aX5 o (4.3a)

Y = Y + MPY (4.3b)s

Let us solve Equation (4.3b) for Y (compare to Equation 2.5b).

Y = (I - MP)Y (4.4)
s

Substitute Equation (4.4) into Equation (4.3a).

T m TP ...
0= Ys + _0 P (I - MP) Y s (4.5)0 sO-I

If Y is not invertible, that means the set of vectors of . -
s

initial auxiliary voltage waves is linearly dependent. The system is

not fully constrained. Two signals may be arriving form the same direc- ..

tion. In the process of nulling N-1 signals the Nth will be nulled for

"free".

Assuming that all the signal vectors are independent let us post

multiply both sides of Equation (4.5) by Y -1s

T -l T -i 46
0 =_sys0 Ys + m P(I - MP) (4.6)

Now let us post multiply both sides of Equation (4.6) by (I-MP).

0 = TYs Y (I - MP) + mT P

oT + (m T T -IM)p= s0 s --r 0 - s0 YsM)

T T T
U +(m - u M)P (4.7)

T T -1 T
where u = y sO Ys or u = (Y ) y

-- -- -sO
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4.0 NULL FORMING CAPABILITY OF AN ACTIVELY TERMINATED PARASITIC ARRAY

4.1 Forming N Nulls on N Simultaneous Signals

In this section on forming multiple nulls, it has been assumed

that all the signals are at the same frequency. This was required so

that the array coupling matrix, M+, would be the same for all the signals

desired to be canceled. In Chapter 5 when adaptive control is discussed

it will also be assumed that these signals are uncorrelated. This con-

straint is applied to keep the analysis tractable. Cancellation of

signals of different frequencies is possible and is discussed briefly

later, but a detailed analysis was not possible under this contrhct.

Given a parasitic array of a main antenna and N auxiliaries,

let us find the reflectivities, p n necessary to null N signals. Let each

incident signal be expressed by the voltage waves that the signal pro-

duces in each transmission line incident on the termination, in the absence

of the other signals and with all terminations = z0 (the transmission line

characteristic impedance). Let the vector of the voltage waves at the N

auxiliary antennas from the nth signal be and the main antenna vol-

tage ysOn" Similarly, let Y be the vector of final voltage waves inci-

dent on the auxiliary termination and y On the final voltage wave incident

at the main antenna termination for the current set of reflectivities

due to the ntn signal. These quantities can be related by the following

equations (see Equation 2.3).
Tp

Y01= YS0 1 + m 00 P0Y0 1 + F 1

Yl = Ysl + m 0P 0Y0 1 + MPY -

T
YON = YsON + m00P0yON + m0 -N (4.1)

YN Y ZsN + O0YON + MPZN

The i,j indices of each yij denote the antenna and signal source respectively.

To express these more compactly, let us define the following:

Y iYs - -

Y o  Xso

Y ON) (YSON

and YS= [Y SN
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the antenna sources v , incident on the transmission line antenna port

interfaces, will be I v • The voltages transmitted into the trans-

mission lines will be (I - SA)voc x s+ is simply the vector of

transmitted waves as they appear at the other end of the transmission §

lines, i.e., phase-delayed by D.
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Now knowing SA (the scattering matrix of the antenna) = (Z - z I)(ZA + z 01)'

and using identities A.3 and A.6 reduces Equation (3.26) further.

h (I + P+)(I- SAP+)(I - SA)v c  (3.27)

The voltages of interest however are Y.

- (I + P+)y

= (I + P+)Dy (3.28)

is the vector of voltage traveling waves entering the transmission lines

at the antenna ends and flowing toward the terminations; therefore,

v = (I + P+)y, and y = (I + P +) . We now substitute this expression
for y into Equation (3.28).

vT (I + P+) D (I - )i v

%(I + P+ D (I S P -l (I -SA)v~o-T+ + -A-o

2 (1 + P+ D (I S SDP+D) (I - SA)vo-
+ A + A -oc

(I + P) (I DSDP) D(I S )v
+ A + A -oc

= (I + P) (I -SP) D(I -S)v
+ A + A-oc

= (1 + P Q-1 D(I - S )v (3.29)
(I + A -o(329

Equation (3.29) shows the relationship of the voltage across the termina-

tions vT to the open circuit voltages using transmission line parameters.

By comparing Equations (3.28) and (3.29), one can find an expression for

+ =Q+ in terms of v

I = D (I - SA)v (3.30)

Let us analyze this equation a little. In a manner similar to the

derivation of Equation (C18) it can be shown that the voltage waves from

3-20
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Figure 12 Impedance Model of Multiple Element Array Receiving
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The impedance model of a multiple antenna array receiving is

given in Figure 12. As in Section 3.3 the indices for N + 1 antenna

elements shall be 0, ..., N, where 0 is the main antenna. Figure 12

illustrates the various transmission line parameters for a receiving array.

The usual quantities of interest for a receiving array are the voltages

across the. terminations YT"

Within the transmission line model, vT is the vector of voltages

transmitted to the termination; therefore,

v T = (I + P+)+" (3.22)

-1
Equation (2.2) tells us + = Q+ y. This can be substituted into

Equation (3.22) to obtain v in terms of the transmission line parameters.

T =(I + P+ - . (3.23)

For the impedance model the calculation is more involved, unless

the transmission lines are of zero length, in which case Equation (2.8)

may be employed. With transmission lines one must use the equations of ..

Appendix C.2. First one must find v, the vector of port voltage of the

array.

v =2T(2 T + ZA)-1 v (3.24)-A TT A -c

where ZT is the diagonal matrix of the terminating impedances as seen

from the antenna end of the transmission lines. From Rule 2 of Appendix C.2,

we find

ZT= (I + P+(I P+)-
T - + (3.25)

where P+ is the diagonal matrix of reflection coefficients of the termi-

nations translated down the transmission lines to the antennas and z

(a scalar) is the characteristic impedance of the transmission lines.

Substituting Equation (3.25) into (3.24) and manipulating the equations

somewhat yields

(I + P [I + (Z I + ZA) (zo - Z )P +z (zoI + ZA) v (3.26)
-A+ 0 A 0 A + 0 0 A -c

3-18
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At this point, let me restate the conventions on the use of "+"

as a subscript, as put forward in the Glossary of Section 1.4. With the

variables: , +, M +, P+, or Q+ , the subscript signifies that the

variable describes the entire array of main and auxiliary antennas. When

"+" is used with parentheses with the variables: v(+) or v(+), it signifies

that the variable represents a traveling wave or waves, and in particular

voltage waves traveling toward tne antennas (see Appendix C).

The individual total voltage wave, yn" incident on each termination

interface transmits a voltage wave of (1 + pn )Yn through the interface and

into the termination. This is expressed for all the voltage waves in vector

form by (I + P+)Y+.

The total voltage wave within the nth termination traveling away

from the termination-transmission line interface is the sum of (U + Pn)Yn

and an initial reflection from vn(+) incident upon the termination-transmission

line interface. This initial reflection is -p nvn(+) In vector form, this

sum is (I + P)v - P+v+. However, we also know that this total voltage
+-Y+ 4-Y(+).

wave is simply (by definition) STl(+ ) *.

ST(+ )  (I + P) 4 -P v(+) (3.20)

(I [+ P+ (I- JV 124+ (I - -P+()

Thus we have found an expression for S

-1
ST = (I + P+ )(I - +P+) -M+ (I - P+) - P+ (3.21)

= (I + P+) 04-lM+(I - P+) - P+

It .An be shown that this form for ST is equivalent to Equation (3.16),

noting that M+ = . This is done in Appendix D.

3.4 Multiple Element Array Receiving

The material presented in Section 3.2 is generalized in this

section for the multiple antenna array. As in Section 3.3 voltage and

currents will now become vectors of voltages and currents. The reflection

*. and transmission coefficients will become matrices.
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e 0
where D andn

n n n

0e N N

Note that A is independent of the terminating empedances, z Tn's. Thus

= SA and be used to calculate the mutual coupling matrix from theM+ A

antenna impedance matrix, ZAP the characteristic impedance zO, and the

transmission line length £ 's.n
In addition, one can solve Equation (3.17) for ZA in terms of

SA = M+. If desired one can calculate ZA from M+.

ZA = z0 [IM D 1 ][ + D-1IM+D- ] (3.18)

We shall now obtain Equation (3.16) from the transmission line

model. Consider a voltage wave, Vn(+)1 from each source, traveling toward

the antenna and incident on the termination-transmission line interfaces.

Let all these voltage waves be combined into the vector v (+). At the nth

interface, the transmitted wave (ignoring further reflections) is then

(I - P ) Vn(+) Considering all N + 1 interfaces, in vector notation this

becomes (I - P +) v(+) s where P+ is the diagonal matrix of the N + 1 reflec-

tion coefficients (see glossary in Section 1.4). These voltage waves are

illustrated in Figure 11. These voltage waves toward the antennas are

coupled (or scattered or reflected) through the antennas to produce reverse

traveling waves toward the terminations. The reverse voltage waves inci-

dent upon the terminations from a single round trip, in vector notation

are M+ (I - P+) v (+). Let us consider these initial reverse traveling

waves as equivalent initial waves produced by an imaginary incident plane

wave. Let the vector of these voltage waves be Y+" From Equation (2.2),

the final (after all reflections) voltage waves traveling toward the

terminations and incident on the termination-transmission line interface

will be where

-l
- = (I -M+P) x+ (2.2)

-i

=(I -M+P+) M+ (I -P+) () (3.19)
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ZA' the impedance matrix seen at the termination end of the cables,

can be calculated from S and Rule 3 of Appendix C.2, where S is the scattering
A . A

matrix seen from the termination ends just inside the cables.

ZA " [I - s [I + s z °  (3.14)

Thus Equation (3.13) can be rewritten as

ST [[I- SA] 1I + S ZO - ZT] [[I - S [1 + SA) z. + ZT] (3.15)

Equation (3.15) is the generalized form of Equation (3.1). Let us manipulate

further this form for S T  From Identity A.3 of Appendix A, we see that

I -S [I + SA] [I + SA)[I - S

-][I -  z- ZT] [[I + SA][I- SA - Z + zT]-1

- [z+ oA] [A - sZT " z]A[ + ZT[I -S]

-[T + ZOIA -ZT - z]J[[ZT + zI] -[T 0IIAF

[Z [T + z 0l1 1~ S- [Z T + z 0 ]-1 [Z T - zi]0

* [I - [ZT + zoi]-l[z T - zoISA] -1 [ZT + zo]

By applying Identity A.3 again, [ZT + zoI]- [ZT - zI] - [ZT - z0II[ZT + z0 -1]

-P+, and

S = (Z + z oil S- P MI - P+SAI(Z + z I]- (3.16)
T T o A + + A T o

Here Equation (3.16) is the generalized form of Equation (3.2). As in the

single antenna case let us now set all the terminating impedances to z,

i.e., ZT - Zo1, or equivalently P+ u 0.

ST p+= zoI[S - 0](I - O0SAI-1(2 Z

But S when Z z I is the definition of M, the matrix of mutual coupling
T T a +

factors. Therefore it is always the case that M+ "

We can also calculate SA from Rule 3 of Appendix C.2.

'4 -1SA D [ZA - ZI] [ZA + zI] D (3.17)
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The voltage across the termination, VTv by continuity is the total

voltage at the end of the transmission line. The total voltage is

the sum of the incident and reflected traveling waves. Thus, we can

write

vT  - ( + p)y

M (1+ p)( mp) ys

S ( + p)( - mp)- d(l - sA)v

If we remember that m 8 SA. then we see that the above equation is indeed

Equation (3.12).

In this section we have derived the relationships that exist

between the transmission line model and the impedance model of a single

antenna while transmitting. The voltage across the termination was

derived through both models, and we obtained alternate definitions for

Ys the incident voltage on a matched termination due to a far field

source, and for m, the mutual coupling coefficient.

3.3 Multiple Element Array Transmitting

The material presented in Section 3.1, is generalized in this

section for the multiple antenna array. Voltages and currents will now

become vectors of voltages and currents. The reflection and transmission

coefficients will become matrices.

The impedance model of a multiple antenna array transmitting is

given in Figure 9. To remain consistant with the rest of the text, we shall

assume an array of N + 1 elements and use the indices 0, 1, ..., N. Figure

10 illustrates the various transmission line parameters while the array is

transmitting.

The transmitting array is characterized by ST, the scattering

matrix seen by the terminations looking into the transmission lines.

An expression for the matrix ST can be calculated from Equation (C1I) of

Appendix C.2.

S - [2 - Z [ZA + Z V-  (3.13)
T A T A T
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above, it was shown for a parasitic array certain combinations of inci-

dent signals could cause the loss of a degree of freedom. As will be

discussed in the following section, the need to suppress an instability

will also remove a degree of freedom.

The number of degrees of freedom is the dimensionality of

the usable control space. Initially, the dimensionality is equal to

the number of control variables, i.e., the number of complex weight or

variable reflectivities. In the derivation above it was assumed the

array was maximally constrained, that the N control variables were trying

to null N signals. If there were fewer than N signals to null, then there

would not be particular values for the reflectivities as given by Equation

(4.9), but a range of suitable values.

The reflectivity values necessary to form nulls can be cal-

culated from Equation (4.9). Before cancellation can be achieved, how-

ever, one must also determine that the array is stable for those reflec-

tivity values. Stability is a separate issue and is addressed in the

following section.

The issue of nulling signals at different frequencies will be

briefly discussed. First note that, at the different frequencies the

mutual coupling coefficients will in general be different. Let us define

m nT and Mn to represent the mutual coupling factors at the frequency of

the nth signal. Rewriting Equation (4.1) and applying the constraint

that the main antenna voltage is 0 at a null, we obtain the Equations

(4.10).
T

0 = Y Sol + -l Ol PI

Xl = Ysl + MjPYl

T
* Y sON + ON PXN

Y N YsN +MNPYN (4.10)
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Note these equations cannot be combined as was done before. However,

the can be solved for and substituted.

0 =y 0 1 
+ M0 1 T P (I - MiP)-y

T -X

OT m P - 1(4.11)
sON -ON. (I MNP) Y-sN

This is a set of N nonlinear equations in N unknowns, pON... ' N The

solutions of these equations are not easily obtained.

4.2 Stability of a Parasitic Array With Active Complex Terminations

There are two types of stability that can be analyzed in ref-

erence to a parasitic adaptive array, RF stability and control stability.

The issue of PF stability is independent of whatever control algorithm

is being used. EF stability determines whether the system is stable for

a given set of reflectivities. This section deals with RF stability.

Control stability is the issue of stability and convergence of the algo-

rithm controlling the reflectivities. Control stability is discussed in

Chapter 5.

It was pointed out in Section 2.3, that given a set of reflec-

tivity values, a parasitic array is linear in terms of plane wave inputs

relative to an output to the receiver. The domain of 1W stability is

simply those sets of reflectivity values for which this linear system is

stable. The determination of that domain is extremely complex and shall

be accomplished in two steps. First a necessary condition for stability

is derived and discussed. This condition is shown to be sufficient in

certain cases. Several examples are analyzed to give insights into the

behavior of an actively terminated parasitic array. Then a general suf-

ficient condition is derived.

The necessary condition is derived for a specific frequency of

operation. In general the mutual coupling factors, m. i, will be functions

of frequency. The reflectivities will also not be constant over frequency

due to characteristics of the electronics. The necessary condition re-

quires that at the frequency of operation, the array does not exhibit

positive feedback.

4-6

• o .' ". . • ° - -- . . .. . . . . . . ..- .. .. ..° - - " ." • ° 
°
o . o . . . . . .- . • . .. .



Let us first study a single antenna. Figure 14a illustrates the

signals in a single antenna. Figure 14b illustrates these signals in a

system block diagram. From the equation for simple feedback the output
-l1

is computed to be y - (l-mp) Ys' given the system is stable. It is a

well known result that a necessary condition for stability is Re[mp] < 1.

Stating this condition another way, Re[mp] > 1 is a sufficient condition

for instability.

Looking at the complete array we obtain Equation (2.1).

M + (2.1)

As long as M+P+ does not represent positive feedback in some manner, the

array will be stable. To study the multidimensional feedback represented

by M+P+ it will be convenient to introduce the concept of eigenvalues and

eigenvectors.

For a matrix, A, there are certain vectors called eigenvectors,

that when operated on by the matrix A return a scaled version of them-

selves. The scale factor, X, for an eigenvector, x, is called an eigen-

value. Equation (4.12) illustrates this relationship for an eigenvalue,

X, and an eigenvector, x.

Ax = Xx (4.12)

For an NxN matrix there are N eigenvalues not necessarily dis-

tinct. These eigenvalues are found as the roots of the polynomial

Det (XI-A). For each eigenvalue there is an eigenvector, x, determined

to within a scalar factor. If the eigenvalues are distinct then the set

of eigenvectors is linearly independent and in fact mutually orthogonal.

The matrix of these eigenvectors, T = [x 0 - " N ] will diagonalize A.

TAT =

0

If the eigenvalues are not distinct, then the set of eigenvectors may

or may not be linearly independent. If they are not, a set of generalized

eigenvectors can be found which is linearly independent, [16, Chapter 2].

The matrix of these generalized eigenvectors, in a manner identical to

that above, will transform A into what is called Jordan form. Jordan form

4-7
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has the eigenvalues on the main diagonal, l's in particular spots on

the diagonal directly above it and O's every where else. In the dis-

cussion that follows, for computational ease, it will be assumed that

M+ P+ has distinct eigenvalues. The results derived, however, can be

shown valid for general matrices by considering generalized eigenvectors

and their accompanying Jordan forms [16].

Let 0 ,... ,. be the N distinct eigenvalues of M+P+ and

AO .... N , the corresponding eigenvectors. Finally, let T = [x -

Since the eigenvectors are linearly independent, the vector X+ of

Equation (2.1) can be expressed as a weighted sum of them.

N
h a.x.Z i--i

i=O

= Ta where a = (4.13-- -- (4.13)

a(

From Equation (4.13), the weighting value for x. is seen to be the ith

component of the vector T -+. Similarly, + can also be written as a

weighted sum of the eigenvectors.

N
X s b.x. T

i=0

where b and b T y (4.14)

(_ o _bT Zs+

With Equations (4.13) and (4.14) one can rewrite Eqaation (2.1) as below.

N N N

ax. b.x. + M P + a.x .
i=0 1=0 - ++ i=

N
(b + Xia)X (4.15)

i=0

We see that Equation (4.15) really represents N + 1 independent equations

of the form,

a.= b. + Xia. , for i = 0,... ,N (4.16)
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Here the N + I dependent variables y0'" 'y have been trans-

system. We can apply the previously derived stability condition to each

of these subsyctems and thereby generalize the result for an N + 1 element

array. Given the array parameters, mij and p n as measured for a par-

ticular frequency, one can find A0,..., X, the N + 1 eigenvalues of

M+P+. Then a necessary condition for stability is Re[N i] < 1 for all

i = 0,...,N. As previously stated, this result can be shown valid for

general M+P+.

With a parasitic array, a useful and practical constraint is

often that the reflectivity of the main antenna be zero. This means

the receiver is well matched to the transmission line. Under this

condition one eigenvalue of M+P+ is necessarily 0, and the rest are the

eigenvalues of MP. Thus if p0 = 0, one need only consider the array of

auxiliary elements in a stability analysis.

It is shown in Appendix E if the reflectivities contain a single

stage, narrow bandpass filter, such that the mutual coupling coefficients

appear constant over the passband, then this stability condition is both

necessary and sufficient. Such a filter was designed into the active

terminations built by ZAI.

Under the assumption that a single stage narrowband filter is

in use, one can perform some insightful stability analysis. In Appendix F

a stability analysis is made with regard to a two element array.

Consider an example of a two element array of auxiliary antennas.

It is assumed that the first antenna is well matched to its transmission

line so that its self coupling, or return loss, is zero. It is also

assumed that the reflectivity and self coupling of the second antenna is

such that by itself it would be unstable, i.e., Re[m 2 2P2] > 1. It is

shown in Appendix F under certain conditions, Re[m 2 2p2] < 2, that an appro-

priate choice of p1 will stabilize the array.

The most general stability criterion is obtained from [16, p. 376].

Assume that the mutual coupling matrix M+(s) is known as a function of

complex frequency, s. In particular, that each entry of M (s) is a rational

polynomial in s. Similarly, assume that the diagonal entries of P+(s) are

4-10
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rational polynomials in s. Let the polynomial A(s) be the least common

denominator of all the minors of all ordersI of M +(s)P +(s). Then the arra
is stable if and only if det[I - M + ()P+ ()] 10 0 and the polynomial

A(s)det[I - M+(s)P+(s)] has no right half plane zeros.

In Appendix E, it is shown from this general criterion, that if

f(s) is a single stage narrowband filter, then the necessary stability

condition, Re[Xn] < 1 , is both necessary and sufficient.

A minor of the kth order is formed by taking the determinant of

all the elements common between k distinct rows and k distinct columns.
A minor of order 1 is an element. Minors of order n-l are the minors
people are most acquainted with. These are formed by "blocking out"

a row and a column and then taking the determinant. There are )k(n)
number of minors of the kth order, where (n)= kn-k)!
Note, A(s) is not necessarily the denominator of the determinant. Consider

the multivariate feedback represented by

s+l)s-l) +
G(s) =-Then detG(s) - - -  but

(S-1 -1

A(s) = (s+l) (s-l)
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5.0 ADAPTIVE CONTROL OF PARASITIC ARRAY NULLS

For a parasitic array to be useful in practice, adaptive control

of the terminations or reflectivities must be employed. There are several

adaptive control algorithms and several ways of implementing each algorithm.

We shall discuss the gradient algorithm and various search and dither

algorithms and also possible methods of implementing each.

The gradient algorithm would be the fastest and probably achieve

deeper nulls. The gradient tells not only when to change, but also in

which direction. It will, however, use more hardware and cabling and may

require a training pilot signal.

There are several possible dither algorithms, some of them closely

related to the gradient algorithm and some more akin to a search algorithm.

Performance and hardware needs will vary greatly depending on the algorithm

and its implementation. The best compromise of performance over hardware

might be some kind of dither algorithm.

Search algorithms generally will be slower. They may achieve as

deep of nulls. Search algorithms, however, will require the least amount

of hardware and cabling. The only connections to the terminations needed

are DC control and power.

5.1 Least Mean Square Control of Active, Complex Terminations

In the search for an adaptive control algorithm of a compact

array, one might first ask why not take the outputs of the antennas and -

put them into a conventional adaptive array combiner as in Figure 1. One

could use such a system, but there are a few drawbacks.

First, the practical variable RF weight has a high reflection

coefficient for much of its operating range. Such weights, unbuffered

with the strong mutual coupling of a compact array would have an unpredictable

and possibly uncontrollable effect on the array. To buffer the antennas from

the weights, one would have to take a high degree of insertion loss or

include active elements like an amplifier.

Second and more importantly, the mutual coupling can cause blind

spots in the array pattern [19]. The effect of these blind spots might be

the array loses some degrees of freedom for jammers arriving from particular

directions, or there might be some direction which is always nulled and the

desired signal cannot be received from that direction. Note the effects of

these blind spots would be independent of the weight values, assuming the

weights have been buffered.
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In a parasitic array, terminated in variable impedances, blind

spots due to the mutual coupling are not as great a problem. One has

control over them through the variable terminations. It is possible, as

was described in Section 4.1, that certain combinations of jammers can

cause the loss of a degree of freedom of operation, but for an array of

several elements this is highly unlikely.

5.2 Gradient Control

Adaptive control of a conventional array is a linear problem.

The change in the output of the array is proportional to the change in

any of the complex weights. Adaptive control of a parasitic array, how-

ever, is a nonlinear problem. How the array output changes with a change

in a reflectivity will depend not only on the current value of that

reflectivity, but also on the values of all the other reflectivities.

A generalization of the LMS algorithm for nonlinear problems

is the gradient control algorithm. The gradient control law for complex

variables is derived in Appendix G.2. The control law is stated in

Equation (G17). This control law is applied to adaptive control of

parasitic termination in Appendix G.3. The result is given in Equation

(G33)

Pn =-2k y0 (an y)* (5.1)

T -1
en QmR-n -0

where (n Tp-1
1 - (m + __ -PQ m 0 -

T/-l
or T (I +PQ M)e andenth

Po-IM) n and e n I 1 --place

1 - O (Moo + ToQ--

The two expressions for a can be shown to be equivalent. The first is
n

more convenient for calculations. A physical understanding can be gleaned

more easily from the second form. Consider the factor ay ay A P . It is
."0 n

the proportionality constant between a small change in Pn and the resultant

change in y0 * Let us assume a small change Ap n, in, pn and see how it

changes y0 " For the moment, also assume that p0  0 so there are no
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reflections off the main receiver. The change Apn in Pn changes the upward
traveling wave (toward the antenna) reflected off the nth termination by

ynApn. This signal is coupled to the main antenna by the factor mon. Thus

YO changes by the amount m nynAPn Let us write this as e ynynAp n. But

this is not the end of the story. The signal y Ap also couples to the
n n

other antennas, changes their voltages, and this change couples to the main
antenna. One can consider the initial change of ynAPn in the upward travel-

ing wave at the nth antenna as an initial change in the vector of upward

traveling voltages of eynAPn. This signal couples to the other auxiliary

antenna by the coupling matrix M. The initial vector of downward voltages

due to a change Apn in pn is then Me ny nAp n. This is like a change in Y.

The final change in the downward voltages, y, is then Q- Mey nAp n. This

signal gets reflected by P and coupled to the main antenna by k. Thus

the change in y0 due to the change in the auxiliary voltages caused by

the change in pn is m T -1-en Ap n. If we sum these two terms and divide

by Ap F we obtain the numerator of the second expression for a
n n

If P0 j' 0, this creates a feedback loop to the main antenna

through the self coupling mO, and the coupling to the auxiliaries

The loop gain of this feedback is the sum of two terms. The first term,

from the self coupling, is p0 m0 0 . The second term takes the gain of the

reflectivities p0 and couples it to the auxiliaries by E0. As above, this

signal can be considered an initial signal and is turned into a final sig-
-1

nal by Q . This final signal gets reflected by P and coupled back to

the main antenna again by m, completing the loop. Thus the gain of the

second loop is T - p 0. The total loop gain is P(m + mT -m).,

We see that the denominator of a represents positive feedback with this
n

loop gain.

One might ask if the feedback loop is stable. It can be shown

with the formula for the determinant of a partitioned matrix (Identity A.10)

that this denominator is an eigenvalue of Q+ or equivalently the loop gain

is an eigenvalue of +P+. The stability conditions for this loop are there-

fore a special case of the stability conditions described in Section 4.2.

Gradient control can be implemented with basically the same equip-

ment as LMS control, except a method of obtaining or calculating the factor

a is needed. A basic implementation is illustrated in Figure 15. Note the
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main antenna signal y0 must be sent to the control. circuitry of each

auxiliary. Also note that an extra complex weight will probably be

needed to implement the multiplicative factor a n or a n*, depending on

where it is placed.

In implementing gradient control in this manner, it is only

necessary to determine the phase of %. The amplitude of a appears
n n

simply as a modification to the control loop gain k. Furthermore, small

errors in the estimation of the phase of a are not significant. Theo-n

retically, the control loop will still work with up to 890 of phase error.

Phase errors manifest themselves by reducing the loop gain by a factor

of the cosine of the error. In practice, if one is not too concerned

with settling time, phase errors of up to 40 can be tolerated. All

this shows that whatever process is used to estimate the factor a , itn
need not be extremely accurate.

Three methods of obtaining the factor a are presented. The
n

first method uses a pilot signal, close in frequency, sent out of the -

main antenna. In appendix H, it is shown that such a pilot signal (with

the condition p0 = 0) will be received at the nth auxiliary antenna mul-

tiplied by the factor a . This is measured and then used to complete the

gradient algorithm. The second method is to determine all the mutual

coupling factors of the array over all frequencies as well as how the fil-

ter characteristics of the reflectivities vary over frequency. This in-

formation would be stored and used to digitally calculate the necessary

values of the a . These values would then be implemented with a digitally
n

controlled weight. The third method uses a dither to approximate a whichn .

is then used in a gradient control system. This method also requires

P0 = 0. The description of this algorithm is included in this section be-

cause it implements gradient control as expressed in Equation (5.1).

Figure 16 illustrates an analog implementation of the pilot al-

gorithm with the factor a determined and applied by an adaptive weight.
n

There are several points to make about this design. First, we give a de-

scription of the general operation. The reflectivity at the auxiliary

antenna is implemented in polar form, as is currently being done on the

NRL test array. The phase control is obtained by reflecting the signal

off a variable reactance. The amplitude control is obtained with a bi-
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of the reactances while observing the receiver output responding to one or

more signals incident on the array. That is, the pattern was formed adaptively.

Some preliminary attempts were made to use the array in a deterministic manner

by using the theory developed by Harrington [6] to calculate the set of

reactance values that comes closest to synthesizing a given pattern. Using

a commercial RF bridge to measure the reactance value, the reactive termin-

ations were then idjusted to have the corresponding calculated reactance.

However, the approximations in the theory and the inability to measure the

reactance values sufficiently accurately usually resulted in a measured

pattern that differed substantially from the desired pattern. Therefore,

we ended all efforts to use the array in a deterministic manner.

6.2 Experimental Measurements

The manual adaptation investigations were performed using two tech-

niques to adjust the reactance values. In the first technique a single CW

source was installed approximately 70 m from the array. The center element

was connected to a HF receiver, tuned to the source, whose output was observed

on an oscilloscope. We then adjusted the six terminating reactances sequen-

tially and iteratively to produce a minimum in the receiver output. The

azimuthal antenna pattern was then measured. In Figure 22 we show a typical

pattern formed in this manner. There are two noteworthy features. First, a

sharp null has indeed been formed in the direction of the source, as desired,

that has a depth approximately 30 dB below the pattern main lobe, and that

has a width of about 10 degrees. The remainder of the pattern is relatively

featureless; except for the small dip near 240 degrees, the pattern away from

the null varies no more than 3 dB.

The second noteworthy feature is that the gain of the array in

azimuthal directions away from the null is, on the average, only 4.7 dB less

than the gain for a monopole resonant at 20 MHz. In the sector from 30

degrees to 180 degrees, the difference decreases to 2.4 dB. Hence, the

sensitivity of the array is nearly that of a monopole and does not suffer the

large degradation that one might expect from such a small array. Patterns

similar to Figure 10 (that is, an essentially omnidirectional pattern with a

notch in the direction of an incident signal) could be formed for an

incident signal of any bearing.
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6.0 EXPERIMENTAL RESULTS WITH A PASSIVE REACTIVELY TERMINATED PARASITIC ARRAY

NRL has built an electrically small parasitic array for experimental - -

testing. At first the. elements of the array were terminated with only variable

reactances. Test results with these terminations are detailed in [2-5] and

are sumsarized here. Tests with active complex terminations are discussed

in Chapter 8.

6.1 Experimental Parasitic Array

A seven element array was fabricated and tested by NRL to evaluate

the pattern" control achievable with reactively terminated parasitic arrays.

Figure 19 is a photograph of the array. This array has one central element

connected to a receiver and six parasitic elements. All elements are uniformly-

wound helices with a 5 cm diameter and an overall height of one meter. The

antennas are constructed to have a resonant frequency of about 20 MHz,

and the spacing between the central element and the surrounding parasitic

elements is 40 cm (0.027 X at 20 MHz. The top plate visible in Figure 19

is non-metallic and is solely for rigid support of the elements.

The electronically-controllable variable reactances are mounted in

the boxes at the base of each parasitic element. A schematic diagram of

the reactance is given in Figure 20. Continuous control of the reactance

termination is achieved by adjusting the bias voltage on a varactor diode;

the continuous control range mid-point is determined by the combination of the

series inductors switched into the reactance circuit. At the 20 MHz resonant

frequency of the elements, the terminating reactance can be varied over a

range from -450 ohms (capacitive) to +450 ohms (inductive).

The terminations shown in Figure 20 provide control only of the

phase of the incident waves reflected from a parasitic element. Amplitude

control, using variable attenuators alone or in conjunction with amplifiers,

had not yet been implemented in the array. There is a similarity between the

parasitic array described here and various "phase-only" adaptive arrays de-

scribed in the literature [22].

Measurements of the array antenna pattern were made at NRL's

Brandywine Antenna Range (see Figure 21). The antenna range includes a large

ground plane and a rotating platter for measuring the azimuthal radiation

pattern. All of the measurements reported here were made by manual adjustment
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accelerated xandom seArch, (GARS) algorithm is discussed in the

references [22). A guided random search always has the possibility of

choosing a new point far away from the current operating region. At

first glance this aspect may seem a hinderance to convergence, but

because of this property a guided random search can only get

temporarily hung up at a local extrema.
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it may then go into a tracking mode.

We shall discuss two types of random search algorithms, the

random search and the guided random search. These algorithms are

somewhat akin to the exhaustive and guided univariate search algorithms

discussed above. We say somewhat because the guided random search is

not univariate.

The random search assigns a probability distribution to the

whole control space. It may be uniform or it may be shaped by certain

apriori information of the control system and/or the optimal point.

The algorithm then selects an operating point at random based on this

distribution and evaluates its PA. If the PA sastifies the threshold,

then it stops. Otherwise it obtains another randomly generated

operating point. Random search algorithms can be run with or without

replacement. In an algorithm with replacement the probability

distribution is unchanged from one trial to the next. In an algorithm

without replacement, if an operating point selected in a trial does

not pass the threshold test, then that point is removed from the control

space and the distribution is renormalized. If it is a continuous

distribution, then a region around the point is removed. Generally,

one would want to use an algorithm without replacement unless the

system is not time-invariant over the time it takes to converge. The

random search without replacement is very much like the exhaustive

search, except the random search stops when it finds a satisfactory

operating point. It is conceivable, however, that the random search

would search through all the points before finding the right one.

Just as the univariate and guided univariate searches were

attempts to expedite the exhaustive search, the guided random search

is an attempt to expedite the random search. In the guided random search

the probability distribution described above is used for the first trial.

To choose a point for a second trial a random direction from the first

point is selected. Then a random distance out in this direction is

selected from a distribution whose mean might be the interval used in

the guided univariate search above. After the second point, one now

squints the direction probabilities distribution either in the direction

of the second point or in the opposite direction, depending on whether

the PA was better or worse. One can also accelerate a guided random

search just as the guided univariate search was accelerated. A guided
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completed with it, etc. This algorithm has advantages over the ex-

haustive search. First, as the algorithm procedes the output becomes

more and more minimized. We reap the benifits of previous computations -

as we go along. Second, the algorithm converg s faster, particularly

if the array is underconstrained. In practice, usually after several

iterations negligible further increase in performance is observed.

This is the method NRL is currently using in their computer run adaptive

algorithm.

A third search algorithm is the guided univariate. This al-

gorithm is the same as the univariate except an attempt is made to mini-

mize the number of operating points analyzed within each iteration.

When the algorithm begins a new iteration of a control variable, a point,

a certain interval away from current operating value is chosen. If the

output at this point is less than at the initial point, the algorithm

continues in this direction until the output stops decreasing. The

algorithm then zeros in on the local optimal value of this variable.

If the output of the first guess was higher than at the initial point,

the algorithm continues in the opposite direction until the output stops

decreasing and then zeros in on the local optimum. A way to reduce the

number of operating points evaluated is to make the step sizes between - "

the evaluated points variable. If a big change in the output was noticed

between the last two evaluations, then make a big step in the contro±L

variable. If only a small change was noticed, then make a small step.

This is called accelerating the algorithm. The guided univariate

search is a more complex algorithm than the univariate search, but it

will converge faster because fewer operating points are evaluated.

One problem that both the univariate search and the guided

univariate search have is that they can get hung up on a local minimum

of the output, or a local maximum of S/I. Random search algorithms

may temporarily get hung up on a local output minimum, but will

eventually find the global optimal operating point or at least a

satisfactory operating point.

In all random search algorithms, one computes a performance

assessment (PA) statistic for each new operating point. In our case

this might be the array output power (to be minimized) or the S/I (to

be maximixed). Whenever the algorithm finds a point for which the PA

is less than (if minimizing) or greater than (if maximizing) a

particular threshold, then the algorithm stops searching. If need be,
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5.4 Search Algorithms

Search algorithms attempt to search the control space for the

optimal operating point. Given the value of the function to be minimized

at the current operating point and the past history of the function at

previous opexating points, a search algorithm makes a guess as to where

the optimal operating point might be. All search algorithms are sequential,

i.e., they choose an operating point, evaluate it and then choose another,

etc. Unless the evaluation and selection of operating points is done

manually, search algorithms must be implemented digitally.
An advantage of search algorithms is they require the minimal

amount of hardware of all the algorithms, neglecting the computer. Other

than the computer, they require only D.C. control lines to the termina-

tions and a signal to interference ratio (S/I) detector. There is no

need for correlators, adaptive control loops, pilots, or extra complex

weights. Furthermore, search algorithms, because of their digital im-

plementation, are more flexible. If one desires to modify the algorithm,

he need only change the computer program. The main disadvantage of

search algorithms is that they tend to be slow.

There are many types of search algorithms. We shall describe

several here. The simplest in theory is the exhaustive search algorithm.

In this algorithm every operating point is analyzed. The one which gives

optimal performance is noted and then applied. In most systems the num-

ber of possible operating points is too great for this algorithm to be

practical. This is the case here. Consider an array two complex ter-

minations controlled by two 8 bit signals each. Thus the number of oper-
ating points to evaluate is 2 raised to the fourth power. This is 232 or

9approximately 4 x 10 . If we could evaluate an operating point every

micro-second, it would take over an hour to evaluate them all. The one

advantage of the exhaustive search is that it will always select the

optimal operating point.

A second type of search algorithm is the univariate search

algorithm. In the univariate search one of the control variables is selected.

An exhaustive search is conducted upon this variable along with all the

other variables held constant. The value of this variable which gave

the minimum output (or maximum S/I) over its range is then applied to

it. A second variable is then selected and a similar procedure is
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5.3 Dither Algorithms

Most dither algorithms attempt to measure the partial derivative

of the function to be minimized with respect to some other variable of the

system. The measurement procedure of the partial derivative is taken

straight from the definition of the partial derivative. the ratio of a

small change in output to the small change in the input that caused it.

A part cular variable of the system is "dithered" about its present value

with a small amplitude A.C. signal, e.g. a sine wave, square wave, or PN

coded signal. The output signal, or the signal to minimized, is correlated

with the A.C. signal. The correlator output is the partial derivative.

The distinction being made here between dither algorithms and gradient

algoritm-& is that a gradient algorithm uses a coherent (i.e. inphase and

quadrature) correlator, while a dither algorithm simplex detect the

change in the array output power.

The dither algorithm can be implemented in an analog or digital

manner. In an analog implementation the introduction of the A.C. dither

signal and correlation with the output would be accomplished with analog

components. The subsequent adjustment of the undithered value of the control

variable could also be accomplished with analog circuitry driven by the

correlator outputs. In a digital implementation the dither of the control

variable and measurement of the change in the output could all be accomplished

and controlled digitally. For example if the control variable is a digitally

controlled weight, the dither could be implemented by alternating between

to adjacent settings.

Consider the case where the various control variables are dithered

individually and then all variables are changed simultaneously to new values.

The amount that each variable is changed is proportional to the amount the

output changed during the dither for that variable, i.e. the correlator

output. Such an algorithm implements sequential gradient control.

The advantage of dither algorithms over gradient algorithms is

the reduction in the amount and complexity of the analog hardware. In

fact, besides the variable weights, a dither algorithm could be implemented

with a computer, a power detector, an A/D convertor, and 2xN D/A convertors.

The cost for this reduction in hardware is an increase in the adaption time

for the array and under some conditions less mull depth. In a changing

RF environment the array may never completely adapt.
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measurement errors get compounded into significant final errors by the 
many

mathematical operations of the computation. Here again the limitation is

more severe in a larger array where there will be more operations in the

calculation.

A third implementation of the gradient algorithm is a cross be-

tween a gradient algorithm and a dither algorithm. The algorithm is based

on the following derivative

ay n e n Q m YO " (P0 0 ) "  Y0 (5.2)

~Po=
P0  0

for n = 1, ... , N.

These derivatives are derived in a manner similar to that used to derive

By0/3Pn. The derivatives are approximated by dithering p0 about p0 W 0

and monitoring the changes in yn" A design for an implementation of this

method is given in Figure 17. The reflectivity P0 is dithered by alternately

terminating the appropriate port on the directional coupler with a short and

open circuit. The remaining circuitry is similar to that used in the pilot

implementation to estimate a n. The dither basically replaces the pilot

signal. The advantage of this method is that one dither signal allows

the calculation of all the gradient law constants, a . There is no need for
n

multiple, mutually orthogonal dither signals.

One possible disadvantage to this method is that dithered components

of the desired signal may enter the receiver. For some combinations of desired

signal modulation and dither signal this may corrupt reception. If the

frequency of the fundamental component of the dither signal is greater than

the information bandwidth of the signal than this distortion will be minimal.

If the amount of distortion is too great an extra adaptive loop at the main

antenna can be used as in Figure 18. This loop will cancel the dither

component that might enter the receiver. The adaption of this loop can

proceed concurrently with that of the array, but will fully adapt only

after the array has acquired. The adaption of the array, however, can

proceed completely independently of this main antenna loop (assuming p0  0).

The gradient can also be obtained by measuring the individual

partial derivatives directly. Most dither algorithms take something of this

approach. These algorithms are discussed in the next section.
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polar attenuator in the return path of this reflected signal. The factor

a n necessary for the gradient algorithm is implemented by multiplying the

main antenna signal, y0 , by an* before the correlators that drive the com-

plex reflectivity. This is exactly what is illustrated in Figure 15,

except now the reflectivity is implemented in polar form. Note for a polar

weight the reference signal for the correlator must come from a point after

the variable phase control.

In the design of Figure 16 a second adaptive complex weight is used

to both determine a (actually ct*) and multiply y0 by it. This is done
n n0

simultaneously because the input to the weight is a sum of the two signals, y0

and yp. The weight and its control are structured so that the weight value
p th

needed for y to cancel the signal an y from the n auxiliary is the

weight value desired applied to y0 before the correlators of the complex

reflectivity. This weight value is a*. Note the combiner after the
n

0 weights, wI and w., invert the signal from wQ before adding. This means the

signal out of the combiner is w (y 0 + yP) where w = w I + jW In order

for the signal an yp to be cancelled in the combiner, w* must equal a .np n

The adaptive control therefore drives w = a . Two types of tunable filtersn

are used in the design. These filters are needed to keep undesired signals
out of the correlators. TFI rejects y p, and TF2 rejects yn or Y0" Note

quadrature hybrids are generally considerably more expensive than power

splitters and an effort has been made to use as few as possible.

The second method of implementing gradient control uses a

computer. It is assumed that all the coupling parameters of the array have

been measured over all the desired frequencies. From these parameters and

the known or measurable reflectivity one can digitally compute the vector
-1

Q m. This is the vector of the a needed for gradient control (with p0 = 0).
-0 n0

One can then use a programable complex weight to either multiply y n by

a or to multiply y0 by each a * as in Figure 15. This method would workn

particularly well when the reflectivities are digitally controlled as well.

The a are functions of the reflectivity values and when these valuesn

change the a must be recomputed. Thus this method is limited by the speedn

at which the a can be computed. As the size of the array increases the
n

computation time increases rapidly and this limitation becomes more

significant. A second limitation is the accuracy of the calculation. Small
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The second technique by which the reactance values were adjusted

used a desired signal, in whose azimuthal direction a main lobe was requireu,

and one or more interference signals, in whose direction a pattern null was

"* required. The desired signal and the interference signals were slightly - -

offset in frequency ('%1 kHz), so that they all fell within the 16 kiz band-

width of the receiver, but were separated sufficiently that a subsequent

narrow band filter (10 Hz bandwidth) could be tuned only to the desired signal.

By using a hard limiter between the receiver output and the narrow band

filter, the output of the narrow band filter was a voltage proportional to

the output signal-to-interference ratio (SIR), when SIR <<. 1. This voltage

was monitored, and the reactances were manually varied to maximize it.

Two examples of patterns produced in this manner are shown in Figures

23 and 24. In Figure 23 a desired signal was incident on the array at 0 degrees

and two strong interferers were incident at 180 degrees and 252 degrees.

Aftei: the adjustment of the reactances, I and I were decreased 28 dB and
1 2

26 dB, respectively, relative to the desired signal. The pattern in Figure

24 was generated during a series of measurements to investigate the minimum

angular separation necessary to resolve the desired signal from the interference.

The interference was separated 20 degrees from the desired signal and was

suppressed by 24 dB relative to the signal.

The array and the variables terminations were also interfaced with

a PDP-11 computer to allow automatic control by the computer. The control

algorithm was a univariate search (see Section 5.4). The automatically

controlled array formed nulls like those with manual control. A tracking

program was also written and implemented with the computer. This allowed

the array to maintain cancellation of one or more jammes as the platform was

slowly rotated, representing a changing signal environment. Results of the

computer controlled array are described in [4,5].
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7.0 DEVELOPMENT BY ZA OF ACTIVE CONTROLLABLE COMPLEX TEMINATIONS

- 7.1 Design

In designing the active variable complex termination, two

ground rules were established. These ground rules were established to

make interfacing with the current array easier, make any necessary debugging"--

and testing of the terminations or array easier, and to increase the flexi-

bility in array configurations. These ground rules were: 1) that the

terminations should use the existing variable reactances as variable phase

shifters and 2) that the "loop" of the reflectivity be easily opened. A

block diagram in Figure 25 illustrates the design used. The termination was

assembled in three separate small aluminum boxes in order to meet the ground

rules established.

A signal is captured by the antenna and is transferred to the load

by the matching network. The matching network need not be ideal over all

frequencies but it should be good enough to prevent the reverse signal of
the mismatch from dominating the reflectivity. After the matching network

is a two-way splitter-combiner. This device is being used as a three-port

circulator (even though it has 3 dB loss each way). The forward flowing

signal enters both the upper and lower paths (in Figure 25), but is blocked

by the isolation amplifier in' the lower path. In the upper path, the signal

receives some amplification and then enters another two-way splitter-combiner

again acting as a 3-port circulator. Coming out of the splitter-combiner the

signal is reflected off the variable reactance to vary the phase for phase

control. The reverse flowing signal reenters the splitter-combiner and

enters both the upper and lower paths. In the upper path it is stopped

by the isolation amplifier. In the lower path it passes through a bipolar

amplitude modulator for amplitude control and then is amplified. The signal

is then narrowband filtered and returned to the first splitter-combiner,
which sends it out the antenna again through the matching network.

Ther termination comprises three boxes: the antenna interface box,

the amplitude control box and the phase control box. A complete schematic

of the antenna interface box and the amplitude control box is given in

Figure 26. The antenna interface box is simply a four to one broadband

transformer (16 to 1 impedance convertor) and a two-way splitter-combiner.
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The transformer attempts to match the real part of the antenna impedance to

50W. The splitter-combiner is included in the antenna interface box so that

the "loop" of reflectivity may be opened.'for analysis and testing. A 2 dB

attenuator is included between the transformer and the splitter-combiner to

improve the impedance match the splitter-combiner sees. The power loss is

not a problem because of the gain within the termination.

Upon exiting the splitter-combiner the signal also exits the antenna

interface box. Before entering the amplitude control box the signal is

passed through a manually variable attenuator that varies from 0 to 25 dB

and is mounted on the side of the amplitude control box. The attenuator is =

bidirectional so either port can be used for input. The attenuator will

account for variations in the strength of the antenna mutual coupling in

different array configurations. For a given array configuration the

attenuator is set so the array is usually stable. (Remember in Section

4.2 it was shown that an unstable array can often be stabilized if an extra

degree of freedom is available in the control space.) For a given con-

figuration this attenuation need not be changed. In practice the correct

value of attenuation would be built into the termination.

The signal now enters the amplitude control box. It first passes

through a 32 MHz lowpass filter to reject out-of-band signals. Then the

signal passes through an MWA-130 amplifier for both gain and reverse signal

isolation. After the amplifier the signal is sent to the phase control box

via a splitter-combiner and a 3 dB pad to improve the impedance match

seen by the splitter-combiner.

The signal is reflected off the variable reactance and it reenters

the amplitude control box, passing again through the 3 dB pad and into

the splitter-combiner. The signal is then amplified by another MWA-130

amplifier. After the amplifier the signal passes through a 2 dB pad and

then into a Mini-Circuits PAS-3 bipolar variable attenuator.

The D.C. control for the variable attenuator comes from the

computer and should be sent to the amplitude control box through a twisted

pair of wires (or like means) to reduce the effect of RF pickup. The control

signal is received differentially inside the amplitude control box and then

sent through a linearization circuit to account for the nonlinear diode

effects of the PAS-3. This circuit improves the linearity between the

R amplitude out of the PAS-3 to the applied D.C. control voltage.

7-4
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The output of the linearization circuit is sent to the PAS-3 through

a relay. The relay is controlled externally to enable or disable the

termination. If +15v is connected to the relay control line, the relay

will energize and allow the control of the variable attenuator to pass

through. If the relay control line is open circuited or grounded then the

output of the linearization circuit is open circuited and the control line

to the attenuator is grounded. This causes the attenuator to apply

maximum attenuation so virtually no signal passes through. This disables

both amplitude and phase control becaues the phase control preceeds the

attenuator.

Following the attenuator is a final MWA-130 amplifier, which is

followed by a tunable narrowband filter. The filter is composed of a

series inductor and variable capacitor. With the current component values

the center frequency of the narrowband filter can be varied from 12 to

23 MHz with a constant 3 dB bandwidth of about 900 KHz.

After the narrowband filter the signal is returned to the antenna

through the first splitter-combiner and the matching network.

Let us now conduct a gain analysis of the reflectivity loop. The

termination was designed so that, with minimum attenuation in both the

manually variable attenuator and the electroxiical. y variable bipolar

attenuator, the gain of the signal returned to the antenna would be 10 dB.

Figure 27 details the gains and losses of the termination in this situation.

Note to get the desired amount of gain two MWA-130 amplifiers were not

sufficient so three were used. This necessitated the distribution of extra

attenuation throughout the termination. This distributed attenuation was

also desired to improve the impedance match between the various components.

Finally one must consider the problem of added noise. The

added noise comes mainly from the MWA-130 amplifiers. These amplifiers

have a noise figure of 7 dB. Consider first the configuration discussed

above, i.e. that of minimum attenuation. The termination looks like a

a gain of 10 amplifier. Using the 7 dB noise figure for the amplifiers, one

finds the termination (with 10 dB gain) has a 15 dB noise figure overall.

This noise figure for the termination is not constant over all control

settings. It is probably more instructive to look at the noise power inde-

pendent of the signal. Note the output noise power will be independent of

the manually variable attenuator. The output noise power will vary with

7-5
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the electronic bipolar attenuator. The maximum output noise will be when

the electronic attenuator has minimum attenuation, for which the output

noise is 25 dB above thermal noise. The minimum output noise will be when

the electronic attenuator has maximum attenuation. Then the output noise

comes totally from the last amplifier and appears at the output 13 dB

above thermal.

7.2 Laboratory Experimental Data

In the laboratory at Z-A three experiments were conducted on the

amplitude control box of the active termination. These experiments

determined dynamic range, verified simple phase control, and determined the

bandwidth of the amplitude control.

The setup for the dynamic range experiment is given in Figure 28.

The control voltage v was varied for minimum and maximum attenuation of the

RF signal. Minimum attenuation occurs when v = Ov or +10v (in the picture
C

v M +10v). Maximum attenuation occurs when v = +5v. The pictures of

Figure 29a and b show a dynamic range oL 83 dB.

The phase control experiment is diagramed in Figure 30. In the

experiment the reactance port was alternately open then short circuited.

The photos in Figure 31a and b show the results. We see that the output

does indeed shift by 1800 as expected. . .4.

The experiment to determine the bandwidth of the amplitude control

is diagramed in Figure 32. Four tests were run. Control signals of sine

waves and square waves were used, each at 1 KHz and 40 KHz. The results of

these tests are given in the photos of Figures 33 and 34. In Figure 33a

a control signal of 1 KHz sine wave is used and in Figure 33b a control signal

of 1 KHz square wave is used. In each of the photos the low frequency control

signal is superimposed on the resultant RF output signal.

The feature to note in Figure 33a is that the zero crossings of the

control signal and of the RF modulation occur together. Thus, at a control

frequency of 1 KHz, group delay is not significant. In Figure 33b, the

important feature is the nonlinear relationship shown between the control

voltage and the resultant RF amplitude modulation, in particular the soft

limiting nature of the relationship.
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a) Minimum Attenuation

b) Maximum Attenuation
(note scale change)

Figure 29 Dynamic Range Test Results
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a) Reactance Port Open Circuit

b) Reactance Port Short Circuit

Top Trace = Output

Bottom Trace Input

Figure 31 Phase Control Test Results
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a) Sine Wave

b) Square Wave

Figure 33 Amp litude Control Bandwidthl Test Results
wilc :L IHz Control Signal
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a) Sine Wave

b) Square Wave

Figure 34 Amplitude Control Bandwidth Test Results with 40 KHz
Control signal (note shift in time scale from Figure 33)
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In Figure 34a one notices that the sine wave control signal and

the resultant RP amplitude modulation are 450 apart. In particular, the

modulation lags the control by 450. Thus 40 KHz must be the 3 dB band-

width of the amplitude control system.

7.3 Experimental Results of Parasitic Array with Active Complex Terminations

Zeger-Abrams built for NRL four active terminations as described

in the previous two sections. The first termination was delivered to NRL

in June 1982. At this time it was demonstrated that in a small,-closely

coupled, two element array, a single active termination on one of the elements -. "

can effectively form a null in a desired direction. Figure 35 shows the

adapted pattern in one such case.

The remaining three active terminations were delivered to NRL

later in 1982. Work at NRL has been ongoing to fully determine the

capabilities of active terminations in arrays with more than 2 elements.
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8.0 DLVEW4PNENT OF A CONTROL ALGORITHM FOR ACTIVE TERMINATIONS

An algorithm is proposed here for control of an actively terminated

parasitic array to find a stable null. This alorithm is a modification to

the univariate search algorithm currently used by NRL. The algorithm

presumes the use of oscillation, or instability, detectors as described

in Section 8.1.* These detectors are minor modifications to the active

termination: design given in Chapter 7 and would be incorporated into each

active termination. The algorithm also presumes the use of a performance

assessment indicator (PA), possibly a signal to interference ratio detector.

An improved version of the current detector used by NRL is given in the

following chapter.

The algorithm searches for a stable null by restricting its

search to that region of the control space for which the array is stable.

The stability criterion of Chapter 4 (Re [all eigenvalues of M +P+] < 1) is

difficult to apply in practice, because M+P+ is hard to measure and finding

the eigenvalues is an involved computation. This is where the oscillation

detector comes of use. It allows us to. find the stable region of the

control space without knowing M+P+ or its eigenvalues.

8.1 oscillation Detector (Unstable States)

The oscillation detector is based on the following principle:

the final amplifier in at least one of the active terminations will saturate

when the array goes unstable (starts to oscillate at some frequency).

This fact, along with the knowledge that the signals encountered in normal

operation (interference or desired) should not saturate this amplifier,

allows us to detect when an array is unstable. We can detect an unstable

array by noting when any of these final amplifiers saturate.

Figure 36 shows a modification to the design of the active

termination of Figure 26. This modification detects when the peak amplitude

of the MWA-130 output RF crosses a certain threshold. The op amp is

configured as a comparator. The 1.4 MU feedback resistor provides positive

feedback for hysteresis to prevent chatter. The op amp is one of two

unused op amps currently within the termination. Laboratory experiments

have determined that when the op amp threshold is set for 1.4v, the

. . . ... . "L8o-1
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output RF is +15 d•m. We selected to trip the threshold with +15 dBm output

of the 141 amplifier, because this is higher than any expected operatioral

signal .(interference or desired) and yet slightly less than the saturation

point of the amplifier (its 1 dB compression point is +18 dBm) With

the threshold set in this manner, we can detect when the array is near

oscillation but the MWA-130 is still linear. The output of the op amp is

+15v if no oscillation is present and -15v if an oscillation is present.

If an inverted output is desired, the final unused op amp can be employed

to invert this signal. In practice, eight of these signals would probably

be combined to represent one I/O byte to the computer.

Finally, if it is found that the detector will trigger on oper-

ational signals (in particular strong interferences) and not just on

oscillations, one can obtain some extra operating signal range with some

modifications. First, one may raise the threshold of the comparator

slightly. Secondly, the 2 dB pad and the splitter-combiner within the

antenna interface box can be replaced with a 10 dB directional coupler. In

this case the ports on the antenna interface box will no longer be symmetric.

The antenna is connected to the IN port of the directional coupler

(through the matching transformer). The COUPLED port of the coupler is

output to the termination. The OUT port of the coupler is the return u n -

signal from the termination. In this configuration, one gains about 4 dB

more range for operating signals. The sacrifice is a corresponding increase

in added noise.

8.2 Modified Univariate Search Algorithm

The simplest way to control the active terminations will be to

modify the current algorithm, which is a univariate search. The simplest - -

modification of all is to conduct the univariate search as before; however,

consider only those operating points for which no termination is oscillating.

More specifically, while ramping one of the control variables (either

amplitude or phase) and just before evaluating the performance assessment

indicator (PAI) for each new operating point, one checks to see if any

of the terminations are oscillating. If an oscillation is present in any

of the terminations, then this operating point is rejected (without bothering

to check the PAI) just as if its PAI had been insufficient. Upon reaching

a null, the same process of checking for oscillations is continued even

in tracking mode.
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The main advantage of this algorithm is its ease of implemen-

tation. The main disadvantage is inherent to the univariate search

algorithm, namely, it is slow. However, the current algorithm use two

different step sizes for when it varies the control signal. A large

step size when cancellation is poor and a small step size for fine tuning

a null. This arrangement greatly reduces the number of operating points

evaluated while cancellation is still poor and greatly speeds up the

algorithm. "ThAs it is felt that more speed is not essential to the current

experiments with parasitic arrays.

A second possible problem with this algorithm, which also is a

possible problem with any non-random algorithm, is that it may get hung

up at a local minimum which is not an adequate null. This is only called a

possible problem because it becomes unlikely with excess degrees of freedom in

the array, i.e., when there are more actively terminated elements than there are

interferences to be nulled. It should be noted that it may be desirable

to have more than one excess degree of freedom. Excess degrees of freedoms

may also be used to stabilize an otherwise unstable array. Finally, if

the array still forms an inadequate null, even with the extra degrees of

freedom, the current algorithm will recognize this and start over from a

new location which hopefully will lead to a suitable null.

8-4 ............



9.0 DEVELOPMENT OF AN IMPROVED PERFORMANCE* ASSESSMENT INDICATOR (PAIl)

Every control algorithm needs some method to evaluate the current

utility of the system being controlled. The device which does the evaluating -.

is the performance assessment indicator (PAIl). For a conventional adaptive .-.

array with LMS control the PAI is simply the array error signal which one

then tries to minimize. For an SIC the usual PAI is the signal to inter-

ference ratio at the array output (to be maximized).

In designing a PAl for the current experimental array, working

at an IF frequency would greatly ease the complexity of the circuit. Since

the current PAl for the array uses a Watkins-Johnson WJ8718 receiver, it

was felt that the same receiver should be incorporated into the new design.

Figure 37 khows a basic design of a PAI using the WJ8718 receiver. The

main antenna is connected to receiver through an antenna matching network

(possibly as simple as a transformer). The receiver is set up to convert

the signal to a 455. KHz IF with 16 KHz bandwidth. At an IF, the operation

of the signal-interference discriminator is greatly simplified.

One may ask: since the discriminator separates the desired

signal from the interference, why have an adaptive array at all? The problem

is that the discriminator is not a perfect separator. The discriminator

simply uses some feature of the desired signal which distinguishes it from

tihe interference and then produces two outputs such that one of the outputs

looks more like the signal and less like the interference than the other.

The amount of discrimination is far from enough to allow one to attach a

receiver to the desired signal port but is enough to control an adaptive

array.

The two signals out of the discriminator are each sent through

detectors, either power or peak detectors. The outputs of these detectors

are D.C. signals which are then each input to a log ratio amp. A log ratio

amp outputs a voltage proportional to the logarithm of the ratio of the two

inputs. In this case the output is an attempt at measuring SIR in dB.

The key element of this design is the discriminator. Three types

of signal discriminators will be introduced. The recommended type will

be described in detail. Tne three different signal-interference discriminaits
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are: 1) the signal and jammer are narrowband (or even CW) and slightly

separated in frequency, 2) the signal is modulated with a psuedo-noise (PN)

sequence and the jammer can be arbitrary, and 3) the signal is narroqband

(doublesided bandwidth < 6 KHz) and the jammer is wideband.

The jammer-signal environment required for the type 1) discrim-

inator is really a fairly benign environment. It is not likely to be the

jammer-signal enviromment encountered in practice. This discriminator

would be used only with experimental arrays to demonstrate nulling capabilities.

This discriminator would typically be composed of two narrowband filters;

however with a single notch filter (at the desired signal frequency) one

could use the same technique as described below for the type 3) discriminator.

Type 2) discximinator has the advantage of working against

any jammer that is uncorrelated with the PN sequence. The total signal

going into the discriminator is split into two paths. Both paths are

multiplied by the PN sequence. One path (the signal path) then passes

through a narrowband filter at the IF frequency. The other path (the

interference path) is passed through a notch filter at the IF frequency.

e outputs of these filters are then sent to detectors as in Figure 37..

The disadvantages with the PN discriminator are the increased hardware

complexity and the need to synchronize to the PN sequence of the desired

signal (which will have come from a distant transmitter in practice).

The type 3) discriminator is the type recommended. It requires

little more hardware than the type 1) and may be employed against a far

greater variety of jammers. In fact, it can be used anytime type 1) can

be used, as long as the frequency separation is wider than 3 Kkz. The

type 3) discriminator assumes that the jammer has wider bandwidth than the

signal, or at least has a good fraction .of its power out of this band. The

input signal (S + I) is split and one part is sent through a notch filter

at the IF frequency. The power remaining in this signal will be proportional

to the interference power. We now have two signals: one is S + I and

the other representative of I. We would like to have two signals such that

one is representative of I and the other of S alone. If we use the signals

I and S + I in the detectors of Figure 37, then the output of the log ratio

amplifier will be log[(S + I)/I]. This output cannot be used for a PAI

because if I >> S the output is 0. The PAl will change little even for large

changes in I.
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A.14 If y is a scalar function of n variables, x,, arranged into a column

(row) vector x (x T), the expression

ay/ax (ay/aX T )

denotes a column (row) vector with elements y/ x i .

A.15 If y is a column vector with m elements, each a function of n
T T

variables, xi , arranged into a row vector x , the expression y/ _

denotes a matrix with m rows and n columns, with elements il/xJ.

A.16 3UV/ax = (3U/3x)V + U(DV/3x)

T

A. 17 3Y/ayiJ Ej e e T where E is a matrix of all zeroes, except

for the i, J-th element which 1 1; and is a vector of all zeroes

except for the i-th element which = I.

T T T T
A. 18 3a x/ x a and a ?x T = a (if the elements of a are not

functions of any x

T
A. 19 3Ax/ x - A

T T T
A. 20 Chain Rule: ax/ax = (/az )(z/axT)

A. 21 aY- /ax -y- (aY/ax)y-1

A-4
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-BCE- D) -B- C(E-DB- C)

-E B-CE D) 1  (E -DB
1 IC) /

This can be verified by multiplying A and A7 and showing that the

result reduces to the identity.

A.10 Determinant of a partitioned Matrix given:

A ... and

then JAI -IEL-I(B - CE- D)I if E- exists,

and =IBH-I(E - DB- C)I if B- exists.

MATRIX DIFFERENTIATION FORMULAE

A.11 If the elements of a matrix Y(m x n) are functions of a scalar, x,

the expression

WYax

denotes a matrix of order (m x n) with elements Dy1 lj ax.

T

A.12 If the elements of a column (row) vectory~ (y are functions of a

scalar, x, the expression

ar/ax (az /ax)

denotes a column (row) vector with elements Dyi/ax.

A-13 If y is a scalar function of m x n variables, xi~ arranged into a

matrix, X, the expression

ay / X

denotes a matrix with elements ay/3x j

A-3



A.4 if (A + B)-  exists, then ABT is symmetric (i.e., AB T (ABT) T )

if and only if (A + B)- (A - B) is symmetric.

proof of "if":

(A + B)- (A - B) - [A + B)- I(A - B)] (A -BT)(A T + BT)

T T T T(A - B)(A + ) - (A + B)(A - B)

AT BT +AT T AT T AT TAA -BA +AB - BB AA + BA -AB -BB
T - BAT T TT

AB BA (AB )I

proof of "only if": Reverse the above argument.

A.5 If (A + B)- 1 exists, then A TB is symmetric if and only if

(A - B)(A + B) -  is symmetric.

This can be proved with minor variations to the proof of (A.4).

A.6 If (A + B)- exists, then:

(A - B)(A + B) - (A + B + 2B)(A + B) - I - 2B(A + B) -

2B(A + B) - I - (A - B)(A + B)-

A.7 If (A + B)- 1 exists, then:

(A - B)(A + B) - [2A - (A + B)](A + B) - 2A(A + B) - I

or 2A(A + B) - I + (A - B)(A + B)

The following two identities and the matrix differentiation

formulae are taken from CRC. Standard Mathematical Tables.

A.8 Given A - B + UV, where A and B are n x n, U is n x p, V is p x n,
-1

and B exist, then:
A -  B B- -u(I +VB-IU)- VE-

This can be verified by multiplying A and A71 and showing that

the result reduces to the identity.

A.9 Formula for inverting a partitioned matrix. Given:

A " where A is (p + q) x (p + q), B is p x p,
D" E

Cis p x q, D is q x p, E is q x q, and B- 1 and E- 1 exist, then:

A-2



APPENDIX A

MATRIX IDENTITIES AND DIFFERENTIATION FORMULAE

Identities (A.1) through (A.7) are specialized identities

found to be useful in the text. They are given with proof. Identities

(A.8) and (A.9) and the differentiation formulae are taken from CRC

Standard Mathematical Tables, 21st Edition [12], pp. 125-136.

MATRIX IDENTITIES

In Identities (A.1) through (A.8), A and B are square

matrices.

-1-1 -A.1 If A exists, then A-IB - BA-I if and only if AB = BA.

proof of "if":

AB - BA

A-IABA -' = A- BAA- 1

BA-x - A- B

proof of "only if":

A- 1B - BA-'

AA-1BA - ABA-1A

BA- AB

A.2 (A- B)(A + B) - (A + B)(A -B) if and only if AB -BA.

proof of "only if":

(A - B)(A + B) - (A + B)(A - B)
2 2 22A -BA + AB - B - A + BA -AB -B 2

-BA + AB - BA - AB

AB - BA

proof of "if": Reverse the above argument.

A.3 If (A + B) exists, then (A + B) (A - B) - (A - B)(A + B)-

if and only if AB - BA.

proof: Apply (A.1) to (A.2).

A-1
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jammer is of a wider bandwidth than the signal, or at least contains

significant energy outside the signal bandwidth of ±3 KHz of the center

frequency. This also works as the'same discriminant that NRL has

currently been using (namely frequency separation) although at a somewhat

greater frequency difference (3 KHz instead of 1 KHz). The final statistic

that drives the array is basically log[(S + I)/Iy] where y > 1. The

optimum value of y is probably between 1.5 and 2.

Zeger-Abrams developed a new model for analysis of a parasitic

array, particularly useful for analysis of active terminations and adaptive

control. Zeger-Abrams developed active terminations to be used with a

compact parasitic array at HP and developed circuitry and an algorithm for

their control. Finally, Zeger-Abrams developed an improved PAI circuit

to drive an adaptive parasitic array. Possible areas for future development

and improvement include: 1) improvements in array stability through

improvements in the design of the elements, the terminations, and the

algorithm, 2) analytic studies of the array performance that include

noise and studies of combining the element outputs in the manner of a

conventional array, 3) further improvements in design of a PAI, and

4) the study and design of improved control algorithms.
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10.0 SUMMARY AND CONCLUSIONS

The parasitic array is a promising method of building an adaptive

array in a small package. This is a particularly appealing prospect at

HF, where a conventional array would be measured in 100's of feet or

even 100's yards.

The theory of an adaptive parasitic array was presented with

emphasis on active terminations. Two theoretical models of a parasitic

array were discussed, the impedance model and the transmission line

model. The array was described in terms of both models and then the

relationship between the models was established, should one wish to

transform from one model to the other. With this relationship established,

we used the transmission line model throughout the remainder of the report.

An explicit solution for the reflectivity values (of the

transmission line model) necessary to form nulls on jammers was derived.

The issue of stability for an actively terminated array was discussed.

The concept of degrees of freedom for the array was introduced. The

possibility of using excess degrees of freedom to stabilize the array was

demonstrated. Several ideas on how to make the array less likely to go

unstable where suggested.

Experimental results obtained in adaptive nulling with a passive

reactive parasitic array was reviewed. These results were obtained at

HF on the NRL Brandywine Antenna Range with an array about one meter high

and a half meter in diameter.

Zeger-Abrams designed and built four active terminations for

the NRL array. Preliminary results of using these terminations in the

parasitic array were described.

As noted above, an actively terminated array may have stability

problems. Zeger-Abrams developed an instability detector (actually a

near-instability detector) to be used in conjunction with a control

algorithm. A simple modification to use this detector with the current

NRL computer control program was described.

Finally, in order to improve the performance of the NRL array,

Zeger-Abrams designed an improved performance assessment indicator (PAI)

that drives the adaptive control algorithm. This PAI assumes that the

10-j
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the output of the difference amp is the PAI statistic negated. If VS + I

is the output voltage of the upper log amp and VI is the output voltage

of the lower log amp, then the true output of the op amp difference ampli-

fier is 2(yVx - V ). The gain of the lower (non-inverting) inputs +-I
is determined by the 10K potentiometer. If the pot is set so there is a

short circuit between the log amp output and the non-inverting terminal,

then the gain for the non-inverting signal is twice that of the inverting

signal, y 1 1. If the pot is set so the non-inverting terminal is shorted

to ground, then (quite obviously) the gain for the non-inverting signal

is zero, y = 0. Finally, if it is desired that the PAI be positive going

for increasing S/I then one of the excess op amps can be used to invert it.

Several possible performance assessment indicators have been

discussed. The recommended PAI has been described in detail. A schematic

of the recommended design was presented in Figure 39.

9-9
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Table 1

Notch Filter Inductors Specifications

Inductor Approximate Number Wr agInductor of Windings Wr ag

6.41 mH 160 32

5.71 mH 150 32

3.0 mH 110 32

1.85 niH 88 32

1.76 niH 75 32

45 UH 14 26

43.6 UH 13 26

All cores are Ferroxcube pot cores 1408C-A250-3B7,
which require the 140SFlD bobbin and 1408H hardware
set each.
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more. This is clearly impractical. To get the selectivity desired, it is

recommended that the signal at 455 KHz be converted to a lower IF - in parti-

cular 50 KHz. This could be accomplished by mixing with an LO at 505 KHz to

produce outputs at 50 KHz and 1.06 MHz (see Figure 39). The 1.06 MHz component

is then easily filtered out. The filtering is accomplished with a third order

Butterworth lowpass filter with a cutoff at 70 KHz. This filter has less

than 1 dB loss at 50 KHz and ideally 70 dB loss at 1.06 MHz. The final

concern is the necessary stability of the 505 KHz LO. If the LO is in-

accurate then the desired signal is not centered in the notch and some power

may leak through the filter. This leak through power may corrupt the PAI

measurement and degrade the final achievable S/I. 100 Hz accuracy in the

ocsillator is felt sufficient to make this degradation negligible. 100 Hz

accuracy in a 505 KHz ocsillator corresponds to a frequency stability of

200 PPM or 0.02%.

The notch filter is a design previously used by Zeger-Abrams. It

had been built and tested and found to work very well. Table 1 gives

specifications for the inductors. It is suggested that several extra

windings be placed on each inductor and then resonate the inductor with a

known capacitance to "tweek" the inductance value.

The signal into the notch filter first goes through a voltage

divider. This lowers the input impedance seen by the filter and makes the

necessary inductors smaller. There also is a signal attenuation associated

with this divider, but the signal-to-noise ratio of the signal is assumed

to have been well established by the WJ8718 receiver and this is not deemed

a problem. The output op amp provides an infinite output impedance to the

filter and restores the gain lost in the input resistor divider.

The output of the notch filter as well as a sample of the input

signal are then sent to separate peak detectors. Since the signal levels

may be smaller than a diode voltage drop, it was necessary to use ideal

peak detectors. The RC network at the output of the op amp sets the fall

time constant of the peak detector. This time constant is currently set

for 1 ms.

The outputs of the peak detectors go into log amplifiers. The

outputs of the amplifiers are then sent into a difference amplifier to

form the PAl statistic log[(S + I)/I' ] - log (S + I) - ylog(I). Note
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Consider, however, the circuit diagramed in Fiugre 38. The output of

this circuit is log[(S + I)/IT], or equivalently log[(S + I)/I] - (y - 1)log(I).

For large I this becomes -(y - l)log(I). Since y > 1, this term becomes increAs-

ingly more negative as I increases. Thus this circuit will function as a

useful PAI. There is a compromise to be made when using this circuit. When

I > S, we would want Y = 2 so that the control is driven by = -log(I). If

y were less, then we would be reducing the loop gain and increasing the time

it would take to reduce a large interference. However when S > I, we would

want y = 1 so that the control is driven by = log(S/I). For larger y, the

array seeks to reduce I with a single-mindedness that is counterproductive.

It will strive to reduce I even to the detriment of S/I. In particular, if

y = 2, the array will reduce S/I by as much as 1 dB, in order to reduce I

by 1 dB. Note this is better than no desired signal maintainance at all as

one woula get by using -log(I) alone as a PAI. It is thought that the

S optimum value for T is between 1.5 and 2. Finally, it may be possible to

make y itself adaptive, although this is not recommended in the initial

implementation. One such variable T might be y = 2 - f[log[(S + I)/I])

where f Jxi = x if x < 1 and 1 if x > 1. Here log[(S + I)/I] would be

obtained by finding the difference of the log amp outputs before multiplying

by T-

The block diagram in Figure 38 is basically the recommended PAI

design. The critical part of the design is the notch filter. Analysis

shows that the maximum achievable signal-to-interference ratio out of the

array is the ratio of the input to output signal-to-interference ratios of

the notch filter, i.e.

a (S* (S/I) filter input

max array (S/I) filter output.

Assuming one wants a maximum S/I output of the array to be at least 30 dB,

then one would want the desired signal rejection ratio of the notch filter

to be at least 30 dB without significantly reducing the nearby interference.

A notch filter with a 6 KHz 3 dB notch bandwidth at center frequency

of 455 KHz and sufficiently steep skirts to satisfy the above requirements

was considered. The design, however, required inductors with Q's of 800 and

9-4
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APPENDIX B

RELATING S-PARAMETERS TO Z-PARAMETERS

For any N-port network there are two equivalent representations:

S (scattering)-parameters and Z (impedance)-parameters. Scattering para-

meters are defined in Equation (B5) and analyze the system through the

forward (incident) and reverse (reflected) voltage traveling waves.

Impedance parameters are defined in Equation (Bi) and analyze the system

through the port currents and voltages. This appendix derives the

relationship between these two represations.

Consider the N-port network in Figure B.1, terminated with

transmission lines. Let Z = [z ij] be the open-circuit impedance matrix

for the network. The entries of this matrix are defined by

Z. v i
i i =0, for all k / j (Bl)

k

We define the vectors i and v

i 1 v v 1
im V

From the definition of Z and superposition we see that

v = Zi (B2)

The transmission lines connected to the nth port has a characteristic

impedances of zon.

z 01 0(

0

oN

. . . .°.
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The voltage-current telegraph equations for each of the trans-

mission lines can be solved (14, 17, 18) to show that each voltage and

current is the sum of two components:

v + (B3)
n (+)n (-)n

i n = i + n +  i ( - ) n  (B 3)

and in vector form

S = (+) +(-)

ii + i (B4)

Here v and i are the forward voltage and current "waves" traveling• er (+)n l(+)n

toward the N-port network and v and i are the reverse waves
(-)n (-)n

traveling away from the N-port. The scattering parameter matrix S = [sij] 1)1
is defined by

vs.. __(-i__

v1) ) (+)k= 0, for all k ' j. (B5)

From this definition and superposition, we see that

v) =Sv(+ (B6)

It can also be shown from the telegraph equations that these traveling

waves are related by the following equations:

v(+)n v(-)n

S(+)n (-)n on(B7)
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Substituting Equations B7 into B3 yields:

Vn (+)n (-)n

J-v(+)n - (-)n

Ii z z
on on (B8)

Upon solving Equation (B8) for v (+)n and v (-nwe obtain:

v 12 (v + z i)
M+)n n on n

V(-) n 12(v n-z 1)i (B9)

and in vector form

&J(v+ zi
0r-

32 = (v - zi) (BlO)
0-

Equation (B2) can be solved for i and substituted into Equation (BIG).

V()= (I + Z0 Z- )v (Bll.a)

(I - z 0I- z )v (B11.b)

where I is the matrix identity

Equation (Bll.a) can be solved f or v and substituted into Equation (Bll.b).

v =(I ZZ ) (I + z ) V(B2
0 ~0 B2

By comparing Equation (B12) to (B6), we see that

S =(I - 0 Z) (I + Z 0Z

0 0

(Z -z )(Z + z )l(B13)
0 0
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Using the matrix identies A.6 and A.7 of Appendix A, we find the following

equivalent forms for S:

S=I-2Z 0(Z+ Z) (B14)

=2Z (Z + z I (B15)
0

Note if all the z on's are the same, then with the fact that Z

is symmetric, S must also be symmetric.

Finally, Equation (B13) can be solved for Z in terms of S and Z..
0

S =(Z z Z (Z + 0

S(Z + z) (Z 2 z0
00

(I + S) Z (I -S)z

-1
z= (I-5) (I +S) z (B16)



APPENDIX C

SCATTERING PARAMETERS IN TERMINATED TRANSMISSION LINES

C.1 Single Transmission Line

Derivations of the theory used in this appendix are given in

[14, 181. To solve transmission line problems one applies three rules:

1) v(x) = v(+)(x) + v (x), i(x) - i (x) + i (x) and
v~) v(,X) ) V (x)

Z(x) - .i .(x (x) are everywhere continuous, where x isi ( x) i(_) (x)

the distance along the transmission line.

z (x) I + sx) z(x) z (x)
2) zlx) =_Z___1___)_ad___) -

0 1- s(x) a ) z(x) + z (x)
0

where z (x) is the characteristic impedance at the point x.

zA  x>L

z x) 0 < x
0

zT  x < 0 ---
T<%

z(x) is simply the impedance the transmission line could be

terminated with at the point x, and not change the load as seen

by the source.

3) s(x I) - ej2 (Xl - x0) s(x ) where - / and V is the propa-

gation velocity of the transmission line. This is just the

change in phase due to the change in position along the trans-

mission line. Note the change in phase is calculated from

twice the change in distance because it is a round trip.
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To apply these rules to the transmission line network in Figure

C.1, we start at the load, zA. Here z ( ) zA and therefore by

Rules 1 and 2

s(.)-Z(t_) - ZO ZA - Zo . .- ,)0 A o (Cl)-"'-"
s(Z-) + +Z

(2_) o A 0

By Rule 3 we can "move" this reflection coefficient down the transmission

line.

s(0+) e - 2 a . s(t-) (C2)

We can now compute z(O+) from Rule 2.

-j 2

z(O+) + e - j  s-)

1 1- e s(Z-) (C3)

with the continuity of Rule 1, and the second equation of Rule 2 we obtain

s(O-) from Equation (C3).

z(O+) - zT
S(0+) z(O+) + zT (c4)

We can relate these variables to those used in Section 3.1 of the text.

Sz =z(O) =z(O+) z(O-)

A =s(-)

t = s(O+) = m

s = s(0-)

In this section of the appendix, we would also like to show

v (0-) = v . From the definition of traveling waves and characteristic
(+) g

impedance we have:

v(O) v (0-) + v (0-)

i ) i v (0-) v() (0-) (C5)i(0) =i (0-) + i (0-) z
(+) () T  T
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ZT v (0-) v (0+)V()(-

+ Characteristic
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v(() v (0+) v Ot-)

Figure Cl Model for Terminated Transmission Line
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But from Figure C.1, we see that

v z i(0) + v(0)
g T

V (0-) - v() (0-) + v (0-) + v (0-)

2 ( ) (C6vW )

Finally, we would like to show that the model makes sense as

the length of the transmission line approaches zero, i.e., in the absence

of any line. In the absence of any transmission line, one would compute

the reflection coefficient of the antenna as seen by the source as

r - (z A - ZT)/(zA + z,). What needs to be shot-i is that s(O-) approaches

F, as L-approaches 0. It is sufficient to show that as . approaches 0, then

z(O) approaches zA , for then by Rule 2 and the continuity of z(x), s(O-) will
S (z A - zT)/(z A + z . As 2. approaches 0, then e- j 2 09, approaches I andbe A T prace n

from Equation (C3) we can write

lim (0)1 + s(Z-)
0) o i L1- s(i-) (C7)

Note from Equation (Cl) that s(2-) does not depend on £. By combining

Equations (Cl) and (C7), we find the limit for z(O) as 2 approaches 0.

lim z(0) = z +(z A  zoZ 0 0o o

[ zoAz z
= z + z: + :: -: 0o + Zo 0 zA + zo0

=Z(2z)

ZA
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C.2 Multiple Transmission Lines

In this section the results of the previous section are extended

for the case of N transmission lines terminated by an N+l port network

(see Figure C.2). First, let us define the following quantities to sim-

plify notation. In keeping with the text, we shall use the indices

0, 1, .... N.

x

v 0 ,v 0(+) (x \ v 0(_) (x \O(+ 0 &()

N(+)(N N(-)

qN N"

S(x) matrix of s-paxameters relating V(+ (x) and v(_}x)

o o
o 0 T o. .

Z = U , z ="o • T 0
S ZN 0 zz• "

0 TN

The three rules stated in Section C.1 are restated below for

multiple transmission lines. (In evaluating these or any following expression,

the components of x must be all in the same region, i.e., all in the

transmission lines, all in the load ZA , or all in the termination.)

1) v(x), i(x) and Z(x) are all continuous in x, where

v(x) = v (x) + V (x), i(x) = i (x) + i (x) and-M (+)-
Z(x)is defined by j,+) (x) = Z(x)i (x)and

v Cx) = -Z(x)i(_) .
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-1
2) Z(x) = I S(x)] [I + S(X)]Z (x)

-i
and S(x) = [Z(x) -Z (x)][Z(x) + Z (x)] where

ZA xi > 91. for all i

Zo(X) = 0 < x. < £ for all i
0 0 1 1.

LZT x.< 0 for all i

3) S(x I) = Dx 1 - K0) S(x) D(x - )

-0 -0 00
e * 0

where D(x) . 0 < xli, x i < 2'. for all i,

N0 e

and i. - for all iVpi

As in Section C.1, we start at the load ZA*

A  (C9)

Then from Rules 1 and 2 we can compute S(k-)

S(9-) = Iz(Z-) - z Z (Z £-) + Z -

1z - z o 1z + Z I  (CIO)
A 0 A 0 dO

By Rule 3, we can move this scattering matrix down the transmission lines

to x = 0+.

S(0+) D(9) S(k-) D(k) (Cli)

From S(O+) and Rule 2, we can compute Z(0+).

Z(o+) = [I - S(o+)1 [I + s(o+)]z (C12)
C
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with Rule 2 one can obtain S(O-) since Z(O-) Z(Q+) from Rule 1.

S(Q-)= [Z(0+) - Z [Z(0+) + Z (C13)T T

As in Appendix C.1, we can relate these variables to those used in the

text in Section 3.3.

ZA = Z(O) = Z(O+) = Z(0-) (C14)

S = S(91-) (C15)

SA = s(O+) =M+ (C16)

ST = S(O-) (C17)

In the remaining portions of this appendix, several results

useful in the text will be derived. First, Equation (C6) of Appendix C.1

will be generalized for the N-port case. We have by definition

V(O) = v (0-) + v (0-)

i(0) = i (0-) + i (0-)- -(+) --

By Rule 1, we also have

i(0)=Z T 1 -+z v T- 0-_ T (+)(- + T -_(_-)

But from Figure C.2, where v is defined, we see that

v = Z i(0) + v(0)

V (0-) - v) (0-) + v (0-) + v (0-)

= 2v (0-)

Therefore, it can be stated in the general N-port case that

v (0-) = v (c18)

C-8



We would also like to generalize the result shown in Appendix

C.1, that in the limit as Z (or in the general case Ii ) approaches 0,

the model behaves as if no transmission lines were present. Mathematically

we need to show that

lim
Z(0) = ZA

First let us define some normalized quantities. Assuming that z o 0on

for any n, then Z is invertible. In addition, since Z is diagonal, thereo o

exists a matrix Z such that
0

0 o

•

Z , (C19)

and where Z (Z
o 0

Z Z Z 0  .(C20)

Now we will define the following normalized values of ZT and ZA *

I= Z - ZT Zo-= Z -i ZT = Z Z

ZT o Too To (C21)

since ZT is diagonal, and

ZA  = 0 ZA Z°  (C22)

With these normalized quantities, let us rewrite some of the expressions

previously derived, First consider S(9) from Equation (CIO).

S(_-) (Z A - o (ZA + Zo0

(Z A Z -Z Z (Z ZAZ A1  Z Z -uo A o o A a a a

=z (z" -I)Z z (Z' + I) zo A 0 0 A 0

=Z (Z_ -I) (Z' + 1) - 1 Z (C23
0 A A 0
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APPENDIX G

GRADIENTS OF PSUEDO-ANALYTIC FUNCTIONS AND

APPLICATIONS TO COMPLEX GRADIENT CONTROL

Appendix G.l: Theory of Psuedo-Analytic Functions

In the theory of complex variables analyticity is a very use-

ful property of a function. It allows one to treat the function as a

real function of a real variable when differentiating.

There are, however, many important functions, e.g. squared

magnitude and conjugation of a variable, which are not analytic. In

this appendix a property called psuedo-analyticity is defined. Many

tools for the study of this property are derived. Finally, with these

tools the gradient control law for complex variables is derived.

From single variable complex analysis we know that if a func-

tion of a complex variable f(z) = u(x,y) + jv(x,y) where(z = x + jy)

is analytic, then there is a well defined derivative such that f and z

follow all the basic rules of differentiation of a real function with

respect to a real variable.

df = Du_+ u v av Bu
f(z) ax + B = y y (Gl)

A necessary and sufficient condition for analyticity is that the func-

tion satisfy the Cauchy-Riemann equations.

au av au av-- -- and - - = -
x 5y ay ax (G2)

These equations can be written more compactly as

af .af-q = -GJ
ax Y (G3)

Now let f be a complex scalar function of N complex variable,
f(zl, 2,...,z N  U(l,...,uN ) + jv(zl,...,zN), where zi = xi + jyi

Also let f be analytic with respect to zi over the range of all possible

values of the other variables. We may then define the complex partial

derivative.

G-1
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The Inequalities (Fl a and b) can be rewritten and combined

more conveniently as

IRe[m 22 2 4m122p 2  22 < 2 -Re[m 2 p-- (F2)

Note if Re[m2 2 p2 ] > 2, then the right side of Inequality (F2)

is negative and no value of p can satisfy the constraint. If, however,

Re[m 22P2] < 2 then there exists a range of values that will satisfy the

constraint. One such value is
2

Pl = m2 2 p2
I2

4m1 2
2

which makes the left side of (F2) equal to zero.

We have shown that an auxiliary with a reflectivity that would

normally make it unstable, can sometimes be stabilized by the pressence

of a second auxiliary antenna.

F-3
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APPENDIX F

A STABILITY ANALYSIS EXAMPLE

Stabilizing An Unstable Element

Consider the 2-element auxiliary array illustrated in Figure Fl.

It is assumed the self coupling factor, return loss, of the first antenna

is zero, the main antenna is absent or has p0 
= 0, and the reflectivities

have dominant single stage narrowband filters in the reflectivities so

that Re [all eigenvalues] < 1 is both necessary and sufficient for stability.

Consider the case Re[m 2 2P2 ] > I. The second antenna then by

itself, or with p1 = 0, would be unstable. It shall be shown that under

certain conditions, Re[m2 2P2] < 2, there are choices for p1 which will

stabilize the array.

First we need to find the eigenvalues of MP for this array.m P 01 [0 m°  P
MP [ 12 1 L12P2

[12 m 22 10 P2 m12pl m 22P2

Characteristic Equation = det[sl -4P].-

d [ 1  -m 1 2p2- det " "

1ml12 P1  s -m 22 P2] .

2 2= S - sm22 P2  i 1 2 PlP2

The eigenvalues are the roots of the characteristic equation.

Eigenvalues m2 2P2 ± /m2 2 2P2 - 4m122pIP2

2

The stability constraint applied to these eigenvalues yields

two inequalities. I 1"
Re 222 +m 22 2

2 
- 4m PlP2 < 1J (Fla)

and

L 2 2 2 2
Re m2P2 1 2 1212 < 1 (Fib) "

22

F--
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Note the quantity within the brackets is necessarily positive because

the term underneath the radical is the sum of two squares, r 2cos 20-1

and r 2 sin 20.

Substitite cos e V(1 + cos 2e)/2 into (ES) and square both

sides.

r ( 2 1 os2
1 + cos2 )> 2 r+ 1 2r cos2 6 + r cos2i ij

2

or equivalently

2 ..) 4- 21 + r r + I - 2r cos20 (E9)

Squaring both sides of (E9) now yields

1 + 2r2 + r4 > r4 + 1 - 2r 2cos28

2r2 > -2r 2cos26

1 > -cos26

This will be true if 0 W 7/2 + mW for m = 0, ±1, ±2,.... But we have

the constraint 101 < nT/2; therefore, it is always true.

Thus, we have shown for a single stage narrowband filter in

the reflectivities the stability constraint Re[X n] < 1 is sufficient.

Necessity is shown by considering the frequency W0, where f(jw = 1,

and noting that Re[A n ] < 1 is the necessary constraint derived in Sec-
n

tion 4.2.
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The roots of (E4) are found from the quadratic equation.

roots -Cl - X) -FI 0(
2 n 2(

-W0  -(1 X)j () 2 (- )L)2-1 (E5)

We want to show the two values of (ES) are in the left half plane if

Re[X]n < 1. Let x b(l n )/w , then equivalently we can show

Re [- X +V I7P]- I< 0 for Re [X) > 0 .(E6)

(E6) is really two inequalities, one for each choice of the ambiguous

sign. These can be combined as in WE).

Re[x] > IRex' 1 (E7a)

Let x =re ,e where 101 < nr/2. Then (E7a) becomes

r cos > IRer re j21 11i

> [Re'hrcOs 20 - 1 + jr 2 sim 261 (M~)

At this stage an identity for complex numbers becomes useful. If

a = 
0 R + i where aRy a are real, then

P++R V; IOR

2 2where pJ = + a and all square roots on the right side are positive.

This identity can be easily verified by squaring. Using the real part

of this identity, we can rewrite (E7b)

r 0> ±, [\/r4co22+l 1 2r2cos2O + r 4 in226 + 220 - l]

,(- r+ 1 -2r cos26 + r cos206l] (EB)
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order term of A(*) will vanish. The highest order term will become DNls).

Since it was assumed that D(s) and N(s) had no common factors, De (s)

-- will not equal zero when N(s) does.

Thus for any zero of (El), N(s) # 0. The zeros of (El) will

then be the zeros of -[f- (s) ]. The zeros of this factor will be the

values of a for which f (s) equals an eigenvalue of M+P+. Therefore,

the array is stable if and only if all zeros of the following N + I

equations are in the left half plane.

f(s) - 1- 0, n - 0, ..., N (E2)
n

and X is the nth eigenvalue of M+P+n

Note the similarity between these equations and that for posi-

tive feedback root locus. They are the same if f(s) is considered the

open loop transfer function and A the loop gain. The difference is -n
that in (E2) X is complex instead of positive real.

n
Finally, it was mentioned earlier that if a single stage nar-

rowband filter is used in the reflectivity, the necessary stability con-

dition, Re[ n] < 1, becomes both necessary and sufficient. This shall

now be proved.

What needs to be shown is for f(s) given in (E3), the equations

of (E2) will have no right half plane zeros if Re[A ] < 1.
n

sb sh -b.
f(s) 2 2 21Ib t7 (7 (E3)

Here wo is the center frequency of the filter and b is the 3 dB

bandwidth. It is assumed W > b/2 and indeed b is small enough that0

M (s) does not change significantly across the filter passband. The equations

of (E2) become

sb 1
2 2 X -0s + sb+W .Wn

0

or

sb(l -A) + w 2 0 (E4)
n 0
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APPENDIX E

SUFFICIENCY OF STABILITY CONDITION WITH

NARROMBAND FILTER IN MELECTIVITIES

Let us apply the general stability criterion of Section 4.2

to the case of narrowband filters within the reflectivities (see Figure

El). It is assumed that the narrowband filter is narrow enough so that

M+(s) is constant over the passband and is approximated by M+. Also

assume that the filters within the reflectivities are all the same, so

that the nth entry on the diagonal of P (s) is Pnf(s). Here p is a
+nn

constant and f(s) is the same for all reflectivities. Let f(s) - N(s)/D(s)

where N(s) and D(s) are polynomials with no common factors. In this

case the det[M+(s)P+(s)] - p pI ... N (s)det[M+] is a minor of order N + 1.

Its denominator, IlH+l, is the lease common denominator of all the minors.
Let P (s) - P f(s), where P with no argument is the diagonal matrix of

the p0 '... o'p Then the system is stable if and only if the following

polynomial has no right half plane zeros 116, p.376],

N+1
D (s)-det[ - N+P+f(s)]

sNl s-fN+l s)-det[I -ls) M +P+]

N N+l(s)s-det[l (s) -ll) f + P

N+l -

N (s) A[f (s)]

= N+l(s) A[D(S)I/N(s) (El)

where A (-) is the characteristic or eigenvalue equation of M+P+.

Note this is a polynomial because A(*) is a polynomial of order

N + 1 and all the N(s)'s in the denominator of f- (s) will be cancelled
11+1

by the factor N (s) out front.

Let us first see what happens to the polynomial (El) at a zero

of N(s). Because of the preceding factor of N N+(s) all but the highest

E-1
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From the expression for P+ and Identities A.6 and A.7 of Appendix A, it is

seen that

°-1
(I + P+) - 2Z (Z + z I) (D.4)

+ T T 0

(I -P+ - 2zo(ZT + z) I  (D.5)

Substituting Equations (D.4) and (D.5) into Equation (P.3) obtains

ST + P+ (ZT + zI) 2ZT (ZT + z I)-2z o(ZT + zoI) -M+

(I11 - P +M1-+(ZT + zo1) (0.6)

Since 2z0 is a scalar its placement is arbitrary. Also since (ZT + z0 1)

and 2ZT are both diagonal, they commute. Therefore, let us rewrite

Equation (D.6) as below.

ST + P+ 2Z (Z + zoI)(Z + zoI)-(Z + zoI)
T T T 0 T 0 (T 0I M+

-l -"l

.(I - P+M+) -2z o(ZT + zoI)
i

2ZT(ZT + zI-i) M+(I P +M+-2zo (ZT + Zo0 -I

=(I + P)M~ (I -P M) (I-P) (D.7)

It only remains to be shown that

M+(I - P++M+ I  (I - +P+)-M+

and the equivalence of Equations (3.16) and (3.21) will have been proved.

M+(I -P+M+ (I - P+) -l (1 M+P+)M+(I- P +- -- '[(I- P+M)(I - P+1+) -I ]
+= (I -M+P+) -I l(I -M+P+)M+] (I - P+M+) - I .

-1 -1f

= (I - M+P+) (14 - M+P+M+ )(I - P+)+) -l

" - M+P+ -M+(I M (I P+M+)-

M++ '+

D-2
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APPENDIX D

EQUIVALENCE OF EQUATIONS (3.16) AND (3.21)

This appendix will show that the two forms for S derived in
T

Section 3.3 are equivalent. These expressions are repeated below.

S (Z + zo)(9A - P+)(I - PSA -(ZT + zo1) l (3.16)

and.
-1

(I + + (3.21)
=I +) +I1 - M+P+)-IM+ (I - P+) -P+ 1.1

Note that it was shown in the text that M - SA and by an arbitrary choice

we shall use the former expression. It will be convenient to add P+ to both

equations and show the equivalence of the resulting two forms for ST + P

S + P (ZT + zI( - P+)(I -P+M+-) (ZT + zoI) + P+ (D.1)

-1
However, we know from the text that P+ (Z - z I) (ZT + z I) . But since

all the matrices in this expression are diagonal, we can also write

P+ (ZT + zI)P+ (ZT + zoI) (D.2)

Substituting Equation (D.2) for the last term of (D.1) yields

ST + - (ZT + zol)(M+ -P+)(I-PM)-IZ+ Zol -I)

+ (ZT + zoI)P (Z + z I)
T 0 + T o

(ZT + zo 1 (M+ P+) - P+M.+J) + P+ (ZT + 0ol)

1(ZT + z (M+ P + + P(I - +M+)1 - P++ (ZT  z 0-

2 - 1 ---
(Z T + z 0) (1-P + )+( P+M+ (ZT+ ZoI)

- (ZT + zo) (I + P+)(I - +)N (I - P+M+) (ZT + zoI) (D.3)

D- 1
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Now let us determine v (0+) in terms of the source voltages v . From

Equation (C18) we see that v (0-) v. v (0-) is now the traveling

voltage wave from the source incident on the termination transmission

line interface. v (0+) is composed of the component transmitted

through the interface by v) (0-), which is (I - P+)v(+) (0-), and by

itself first reflected off the antennas and then off the terminations,

P+ M+(+)(0+). As an equation this becomes

v (0+) (I - P )v (0-) + P M v (0+) (C30)
+ -W+ + M-+

Solving Equation (C30) for v W+(0+) we obtain

V (0+) - (I-PM) (I- P P)v (0-)
++ + -+)

+ '

Finally we may substitute this into Equation (C29).

i(2) = z (D - D - M+ )( - P1 ) -1 (I P Jv C10 - - g (C31)

If all the transmission lines have the same impedance, then Z (/z )I
T 0 0

and (I - P+M+) Q+ o If the lines are short compared to a wavelength,

then D - I. Under these assumptions the port currents become

(I~ M (I -lP )v .(C37)
2z + + +) (I

C-12
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Therefore, M is symmetric if S(Z- is symmetric. From Equation (C8)
+ A

s L [ A z0 A Z 0

From Identity A.5 of Appendix A, we see that 5CR.-) is symmetric if
T

Z Z is. But Z is symmetric, and if z z for all n, thenA 0 A on o

A0 oA

which is symmetric. Therefore, if all the zon are equal, then M+is

symmetric. -

Finally, an expression for the antenna port currents, iCRt), will be

derived in terms of transmission line parameters. By definition and from

Rule 1, we obtain an initial expression for i(t).

ii) 3 (Z-() + i (-

=z v (R.-)- z v CR.-) (C27)-
0 0() ()

For simplicity of notation let the delay matrix D(Z) be denoted as D.

Noticing that

v (.- =Dv (0+)

and

v 2.) D v (0+)

Equation (C27) can be rewritten as below.

i() = 0 Dv (0+) - D v (0+) (C28)

But we also know that v ()(0+) =M v (0(+) from the definition of 5(0+)

and Equation (C16). This can be substituted into Equation (C28) to obtain

i (.) = - (D - M )v (0+). (C29)

o +c-ll
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using Identity A.3 of Appendix A, we can put Equation (C23) into a form

tat will turn out to be more convenient. (It was the use of this

identity that required the normalization procedure.

s z 0 (zA* + I) (Z' - I) Zo (C24)

However, as IZI approaches, D(k) approaches I. Therefore, from Equation (ClI)

lim S(0+) = S(t-)

= z Z A' + I)
- ( ZA' - I)Z 

-  (c25)o Ao

We can now show the limit as III approaches 0 of Z(0) is Z . From

Equation (C12) and noting that Z(0) = Z(O+), we obtain

nli Z(0) = lim [I - S(0+)]- [I + S(0+)]Z

= [I - Z (ZAI + I)-I (Z - I)Z - ] -l[I + Z (Z I + I) -1 (Z- I)Z ]Z
0 AA 0 0 A A 0 0

=Z [I (Z ' + 1)-1 (Z I A- Z -i +A o o
0 A A ~ 0  Z0 [ A + (Z +0) ( -I

Z~ [Z' + I- Z' +I]- 1 (Z ' +1I) (Z 1+ 1) 1 [Z ' + I+z Z ]Z1

= Zo  (21) -(2ZA )Z

Z
A (C26)

Now it will be shown that if all the transmission lines are of

the same characteristic impedance, then M+ = A= S(O+) is symmetric, i.e.,
T

M = M.-. + +

M= S(0+) =D()S(Z-)D(k)

= DT () S (-)D (.)

because D(x) is diagonal and hence symmetric.
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af au + ., - av (G4)
1zi ~ ax 5y1  Y

If f is analytic for all the variables z1I ...,zN then one can define

a complex gradient
af
as.

Vf

aZ (G5)
n

Consider a function g(z) r(x,y) + jq(x,y), which is not

analytic, but whose real partials ar/ax, aq/ax, ar/By and aq/ay exist

throughout the region of interest. Such a function is defined to be

psuedo-analytic. For such a function it is useful to define the

psuedo-derivative O'(z) as in (G6).

,9 + jL . r .;_, + .r -

dz ax ay ax dx + B ay (G6)

Note from (G3) we see that the psuedo-derivative of an analytic function

is zero. The computation of the psuedo-derivative can be a test for

analyticity.

Psuedo-analyticity can be extended to multivariate functions

as analyticity was. Consider a complex scalar function of N complex

variables g(zl,...,z N ) = r(z1,...,zN) + jq(z1,...,zN). If the partial

derivatives ar/axi, ar/ayi, 8q/ax and aq/ay exist for all possible

values of the other variables, then g is said to be psuedo-analytic in

zi and one can define the psuedo-partial derivative as in (G7).

w A

a - - + azi  ax. By ax. ax By Y" i i

Similarly, if g is psuedo-analytic for all the variables z , ...lZN, then

one can define the psuedo-gradient as in (G8).

G-2
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A7

3z1  ax a

ag 1 ky
-- Vg = " ' -j..

3zN ax ~ ayN (G8)
A)NN

Again, note for an analytic function f, Vf - 0.

To ease the cumbersome notation, let us define the operators

Vx(- and Vy().

ax ay 1

V(.) - andV(.) x y

(a/ (ayN (G9)

With these operators Equation (G8) can be rewritten.

Vg V xg + jvy 9

= Vr + jVxq - Vyq + jVyr (GlO)
x x y y

Note Vx (g*) - Vxr - jVxg = (V xg)* where ( )* denotes conjugation. Simi-

larly, Vy(g*) = (V g)*. From Equation (G3), we see the gradient for
y y

an analytic function f is easily written as in (Gl).

Vf = Vxf = -jv yf (GIl)

Finally, we define the operator V , the conjugate psuedo-gradient,

in (G12).

V g Vxg - jV g (G12)
x y

Note for an analytic function f, the conjugate psuedo-gradient is not

zero but twice the analytic gradient.

Vf Vf -V f = 2Vf (G13)

G-3
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We will prove three theorems useful when working with psuedo-

gradients.

Theorem 1: The conjugate of the psuedo-gradient is the conjugate psuedo-

gradient of the conjugate, i.e.,

AA
, ^* * .... J

(Vg) V g (G14) .'-

proof: (Vg) = (Vxg + jVyg)
x y

= (Vxr + jVxq -Vyq + jVyr)

= Vxr -jVxq- Vyq- jVyr

= xg -jVyg
^, *

= V g - ivx y -

=Vg

Theorem 2: For two psuedo-analytic functions of N variables, gl and g2 .

the product rule of derivatives holds, i.e., .

V(glg 2 ) = glVg 2 + g 2 Vg (GI5)

proof: V(gg 2 ) = Vx(g 1 g 2 1 + jVy (gl12

glVxg 2 + g2V gl + jg Vyg 2 + jg2 Vgl

gVg2 + g 2 g1

G-4
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Theorem 3: For an analytic function f,

Sf12 * (G16)V~I - 2f (VL)

proof: Vif2 V(ff

= fVf + f Vf , from (G15)

f(Vf ) + 0 , from note after (G8)

f(V f), from (G14)

- f(2Vf) , from (G13)

= 2f(Vf)

Appendix G.2: Complex Gradient Control

Consider a system (e.g. a parasitic array) that is controlled

by N complex state variables zl, ... ZN (e.g. the reflectivities). It

is desired to minimize some positive definite scalar quantity, V(z)

(e.g. power received at the main antenna). A function is positive defi-

nite if it is nonnegative real for all values of its arguement and is

zero only for an arguement of zero. Note that V(z) is not analytic in

any of its state variables. If, however, v(z) is psuedo-analytic in

all of its state variables, one can employ the complex gradient control

algorithm defined by (G17).

A -k V Vz) , where k > 0 , z (G17)
zN

and V is the psuedo-gradient defined in the previous section.

In applying this control law one equates real and imaginary

components of both sides. Let z = x + jy where x and y are real vectors.

Then (G17) implies the following two real control laws.

x - -k Re [V V(z)] (G1)

y -k IM [V V(z)] (U19)
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N __-V

From Equation (GlO), we can rewrite (G18) and (G19).

- -k Re VV(x,y) + jVV (,)

-k V V (x,Y) (G20) . "

* ~ ~ ~ =-k mvyv x +i vxi)

-k V yV (x,.) (G21)

The quantity VV(x,y) separates into real and imaginary components as

above because VxV and VyV are purely real since V is positive definite.
But Equations (G20) and (G21) simply represent the familiar

real gradient control law for the 2N real variables xI , ... , 8 ,N Y'''N"
The complex control law of (G17) is just a compact way of writing this

for complex variables.

Let us now compute dV/dt from the real multivariate chain

rule.

dV To To
dt (V xV) , + (V V)dt x. y

= Re (V-V i ""

- Re [&*T1
=Re VV T(-kVV

(G22)

We see that dV/dt is always nonpositive. Thus the system is stable in
a control sense. This property of dV/dt is negative semi-definiteness.

If dV/dt or equivalently VVI is zero only when z - 0, then dV/dt would

be negative definite and the system would be assymptotically stable in a

control sense. This means there are no nonzero local minimum of V for

the control law to get trapped in and it will always drive V to zero.

A useful special case is when V(z) - If(z) ,2 where f(z) is an
analytic function over all the state variables. We can then apply

Theorem 3 of the previous section to Equation (G17) .

z -2k f(Vf)* (G23)

G-6



This is the form of the complex gradient law we shall find most useful

in our analysis.

Lastly, consider the example of a conventional adaptive array,

as in Figure 1 of the text. The array output is given by (G24).

T

where y0 is the signal at the main antenna, y is the vector of signals

at the auxiliary antennas and w is the vector of the adaptive weights.

it is desired to minimize lEl 2 We can apply (G23).

w = -2k C(Vc)

= -2k E from Identity A.17 (G25)

This is the well known least mean square (LMS) algorithm.

Appendix G.3: Gradient Control of Active Complex Parasitic Terminations

Let us apply this theory to the adaptive control of parasitic

elements. Consider Equation (G17). Our positive definite function is

1 Y0 12, the power incident on the termination of the main antenna. To

apply (G17) we need state control variables which are zero when 1yo 2 is.
Let these variables be z = p - Pno where p is the nth reflectivity

n n n~o n
and p n is the value of this reflectivity necessary for a null. From

Chapter 2, we know ly0 1
2 as a function of the reflectivities p n Let

us signify this by lyO(p)12 = Py(z + p o2 where p z, and nare

respectively vectors of the p z and p n Lastly, let Vp( ) repre-
non no" P

sent the gradient with respect to thep n and Vz( ) and V ( ) be thez z

gradient and psuedo-gradient with respect to the z n Equation (G17) now

becomes (G26).

-kV lyo (z + I p W

-2k yo(z + p) Vy(Z +01 G26) ---

Note with the notation of Appendix A,

T T"" "

VZY 0 (Z + . o ay 0 /az = (a 0 T z

G-7
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We can apply the chain rule of A.20 and obtain (G27).

VZy 0 (z + Po 0 (ayo/az T)T

(a 0 T) (ap/ zT)] (a

TBut 2y2z is the identity matrix. Equation (G27) then becomes

Vy 0 )y0~ -p

V = VY(P2) (G28)

This has simply been an application of the chain rule to the aet of trans-

lated variables z n = pn - pnO. The result allows us to state the control

law in terms of the reflectivities with~out the need to know the values

necessary for nulls.

p. -2k y 0 (2)[IVPY 0 (.)] *(G29)

The vector .2 is not used in computation, but the reflectivities are

arranged into the diagonal matrix P. To use Equation (G29) we must

separate it into N equations of the form.

-2k y 0 (aO n-l . N (G30)
nap

we must now compute ay 0/3p n The relationship of y 0 and p n is expressed

by Equation (2.3).

T
0 yo 0 p 0 0 0 + -O

Y 4 + Peny 0 + M (2.3)
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Let us differentiate both sides of these equations using differentiation

formulae A.16 and A.17.

/ ' + Pa (G31a)

n nn

BIay 0  + / ax '-0 ~.- +M4 +P - J(~b
n "P0MO an nn apn (G31b)

where En I i-n, j-m

Solve (G31b) for - and substitute into (G31a).

a 0 0  TF(

! + p-1 IY EnY G2..._,"
a = n~ 0 PA p n MO nny + PQ PM .a- n+ n

T -i ay0) T( -i

where Q=I M P

Note the existance of Q is necessary for RF stability. Using matrix

identity A.8 with B = I, V = M, U = P, and realizing MP (PM), one can
- (Q-)T-

show (I + PQ-I) = Lastly, define e = vector of all zeros-n T'

except the nth element which is 1. Then E e e T and Enn- -
nn -,n-n n 2yn

We can now solve (G32) for ay0/BP.

T -1)T
aYo (Q e

e0-Z Mn n '"
Pp m lP( 0 + mTPQi1m)

T -1
- nQ

, nyn  where this defines a n  (G33)

G-9
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r s~r- .. "

Equation (G33) can be substituted into the control law of (G30).

Pn -2k y 0 (ny) (G34)

Compare this expression to the LMS control law for a conventional adaptive
array in (G25). They are the same except for the factor a n , where P

corresponds to w n , y0 to E and yn to the signal at the nth antenna. The

physical significance of a is discussed in the test.
n

0-10

. . ....



APPENDIX H

DEIVATION OF GRADIENT CONTRO)L WITH PILOT

From Appendix G, Equations (G30) and (G31) state the gradient

control law for an adaptive parasitic array.

= 2ky0 (%Y) , for k > 0 (G31)

T -1
where an -l Q T and e = nth element

nn I
-P 0a (m 0 0 ""MoPQ -1 0 G0

In implementing gradient control it will be necessary to estimate the

factor a . It will be shown in this appendix that a pilot signal sentn

up the main antenna will be received at the nth auxiliary antenna multi-

plied by the factor a under the condition p0 = 0.le ytefco n,  T -il

From the expression for a above, we see that a = eQ T "
n n -1 -

Now consider a pilot signal, y 0 , injected upward at the main antenna

(see Figure Hl). This upward voltage traveling wave couples to the N

auxiliaries with the coupling factors of Mo. This creates an initial

downward vector of traveling waves of EYp0 . From Equation (2.5b) the

final vector of downward traveling voltages, ), is found to be Q Ey 0 ,

when p0 = 0. The voltage traveling downward at the nth antenna, y
-1 pn'

is eTQl
n lOyp0

enQ--n -O n,
Ypn T -0= eM Q !! o O'n (H )"
P0n

given P0 "0

It can be shown for the case p0 10 0, through Equations (2.3

a and bL# that the ratio y /Y is in general given by (H2).
pn p0

ypn e T Q + (Lp (H2)

Yp0  [1- m0 0 P0  mP 0  %

This does not equal a Thus the constraint pO 0 is clearly needed.
n
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Main nth Auxiliary
Antenna uin Antenna

Figure HI Pilot Signal Injection
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